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Chapter 3: An Introduction to Group Theory 
 

Many problems in chemistry can be simplified based on the symmetry of molecules 

and/or the symmetries of atomic and molecular orbitals.  Since this course will deal mostly in the 

mathematical models used to describe molecular motions (rotations and vibration) and the 

orbitals needed to describe the electronic structure of atoms and molecules, some introduction to 

the mathematics of symmetry is useful.  The concepts discussed in this chapter will be used 

through the text to demonstrate how symmetry can be used to simplify the descriptions of atomic 

and molecular behavior. 

 

Overview 
 

 Group Theory is the mathematical theory associated with the mathematical properties of 

groups.  In chemistry, group theory is the mathematics of symmetry.  A group (G) is a set of 

elements (A, B, etc.) that can be associated through a mathematical operation (sometimes 

referred to as a multiplication operation, eg. A*B) and satisfying the following criteria: 

 

1. The group must have an identity element (E) such that for each element A in the 

group, A*E = E*A = A.  (It can be proven that for a given group and multiplication 

operation, the identity element is unique.) 

2. Each element A in the group must have an inverse (A-1) that is also a member of the 

group and that satisfies the criterion A*A-1 = A-1*A = E.  (It can be proven that each 

element has one and only one inverse.) 

3. The group must be closed under multiplication.  That means that for any pair of 

elements in the group A and B for which A*B = C, C must also be a member of the 

group. 

 

Note that the multiplication operation need not be commutative.  The order of multiplication 

may matter.  There is no guarantee that A*B = B*A.  Many groups that satisfy this property are 

called abelian groups. 

 

The set of numbers 1 and –1 form an abelian group under the normal operation of simple 

multiplication.  A simple group multiplication table can be constructed for this group. 

 

 1 -1 

1 1 -1 

-1 -1 1 

 

Clearly, the identity element in this group is 1 since multiplication by 1 gives the same number 

back.  Also, both members happen to be their own inverse since  

 

1*1 = 1  and   (-1)*(-1) = 1 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Introduction to Group Theory © 2022 
Patrick E. Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 
(CC BY-NC-SA 4.0) 

76 

 

 

Group Theory in Chemistry 
 

In Chemistry, group theory is useful in understanding the ramifications of symmetry 

within chemical bonding, quantum mechanics and spectroscopy.  The group elements we are 

concerned with are symmetry operations.   

 

Symbol  Operation  Description  Element  Mathematical 

example 

E identity This is the “don’t do 

anything to it” 

operation 

E. E (x,y,z) = (x,y,z) 

Cn Proper 

rotation 

This is an operation in 

which the object is 

rotated about an axis 

by an angle of 2/n 

radians.  The axis will 

be referred to as the 

“Cn axis”. 

Cn.  The axis 

with the largest 

value of n is 

designated the 

“principle 

rotation axis” 

and the z-axis 

is always 

assigned as 

lying along the 

principle 

rotation axis. 

C4(x,y,z) = (y,-x,z) 

 

C2(x,y,z) = (-x,-y,z) 

 

Etc. 

 Reflection 

plane 

This operation 

involves reflection of 

the object through a 

mirror plane. 

v, d or h.  

v and d 

contain the 

principle 

rotation axis, 

whereas h 

planes are 

perpendicular 

to the principle 

rotation axis. 

v(x,y,z) = (-x,y,z) 

(for reflection 

through the yz plane) 

 

h(x,y,z) = (x,y,-z) 

 

d(x,y,z) = (y,x,z) 

i Inversion 

center 

This operation 

involves reflection 

trough a point. 

i. The inversion 

center (if it 

exists) will 

always be 

located at the 

center of mass 

of a molecule. 

i(x,y,z) = (-x,-y,-z) 

Sn Improper 

rotation 

This operation 

involves a rotation 

Sn.  
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through a Cn axis 

followed by reflection 

by a h plane. 
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A symmetry operation is a geometrical manipulation that leaves an object in a geometry 

that is indistinguishable from that which it had before the manipulation.  There are five important 

types of symmetry operations with which we are concerned.  Each type of operation has an 

associated symmetry element.  Using standardized notation, these operations and elements can 

be summarized as follows. 

A given molecule may have several of the above symmetry elements.  The particular 

combination will define a group, and that group can be given a named based on the type of 

symmetry elements it contains.  Further, all of the convenient wavefunctions that describe the 

vibrations, rotations and molecular orbitals of the molecule will be eigenfunctions of the 

symmetry elements, forcing some very useful mathematical properties upon the wavefunctions. 

 

A case study: the symmetry of a tennis racket 
 

 A tennis racquet has all of the same symmetry elements as a water molecule or a 

formaldehyde molecule.  Let’s identify these symmetry elements and write out a group 

multiplication table for the group to which that particular set belongs. 

 

The most obvious symmetry element is always the identity element (E).  Every object possesses 

this symmetry element.  Some objects are so asymmetrical that this is the only symmetry element 

they possess.  Certainly, a tennis racquet possesses the symmetry element E.  

 

The next most useful element to examine is the reflection plane.  An object may or may not 

possess this type of symmetry.  A tennis racquet has two vertical (v) reflection planes.  One is in 

the plane of the strings and the other is perpendicular to the face of the racquet.  This happens 

often that an object has more than one of a given type of symmetry element.  For our purposes, 

we will designate the plane that is perpendicular to the face of the racquet as v and the one that 

is parallel to the face of the racquet as v’. 

 

A tennis racquet possesses neither an inversion center (i) nor an improper rotation axis (Sn). 

The set of symmetry elements that the object does possess (E, C2, v and v’) define a group that 

goes by the label C2v.  Any object that has these and only these symmetry elements is said to 

have C2v symmetry.  It is easy to demonstrate that the set of symmetry elements that define C2v 

define a group.   

 

Determining the Point Group for a Molecule: the Schoenflies notation 
 

The first step in determining the point group for a molecule is to determine the structure 

of the molecule.  Once this is done, identify all of the symmetry elements the molecular structure 

possesses.  Once this has been accomplished, you can use the preceding flowchart to determine 

the correct point group using the Scheonflies notation system. 

 

Example: Determine the point group for a methane molecule. 
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Solution: A methane molecules has tetrahedral symmetry. It contains the following symmetry 

elements: E, 4 C3 (one each along a C-H bond) axes, 6  planes (one each containing the carbon 

and a pair of hydrogen atoms), 3 C2 axes (each on bisecting an HCH bond angle.)  It also has 3 

S4 axes (each one co-linear with a C2 axis.)  The molecule belongs to the point group Td, as can 

be discerned from the following analysis. 

 

1. Is the molecular Linear?     No 

2. Does the molecule have two or more Cn3 axes?  Yes 

3. Does the molecule have a Cn4 axis?    No 

4. Does the molecule have any  planes?   Yes 

5. Does the molecule have an inversion center?  No 

 

➔ The molecule belongs to the Td Point Group. 

 

 

Example: Determine the point group for CH3Cl. 

 

Solution: Chloromethane has the same tetrahedral shape as methane, but belongs to the point 

group C3v.  The molecule has the following symmetry elements: E, C3 (along the C-Cl bond axis) 

and 3 v planes (each containing the chlorine and carbon atoms plus one hydrogen 

atom.  The classification of the molecule goes as follows: 

 

1. Is the molecule linear?      No 

2. Does the molecule have two or more Cn3 axes?   No 

3. Does the molecule have a Cn axis?     Yes 

4. Are there n C2 axes perpendicular to the principle axis?  No 

5. Does the molecule have a h plane?     No 

6. Does it have n v planes?      Yes 

 

➔ The molecule belongs to the C3v point group. 

 

 

Example: Determine the point group for benzene. 

 

Solution: Benzene has a planar geometry and belongs to the point group D6h. The molecule 

possesses the following symmetry elements: E, C6, 6 C2, 6 v, h and i.  The classification of the 

molecule goes as follows: 

 

1. Is the molecule linear?      No 

2. Does the molecule have two or more Cn3 axes?   No 

3. Does the molecule have a Cn axis? (n = 6 for benzene) Yes  

4. Are there n C2 axes perpendicular to the principle axis?  Yes 

5. Does the molecule have a h plane?     Yes 
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➔ The molecule belongs to the point group D6h 

 

 

Example: Classify ethane by its point group. 

 

Solution: Ethene has a planar geometry. The molecule possesses the following symmetry 

elements: E, 3 C2, 3 , and i.  The classification of the molecule goes as follows: 

 

1. Is the molecule linear?      No 

2. Does the molecule have two or more Cn3 axes?   No 

3. Does the molecule have a Cn axis?     Yes (n = 2) 

4. Are there n C2 axes perpendicular to the principle axis?  Yes 

5. Does the molecule have a h plane?     Yes 

 

➔ The molecule belongs to the D2h point group. 

 

 

 

Example: Classify the isomers of dichloroethene by their point groups. 

 

Solution: Dichloroethene has three isomers.  All of them have a planar geometry.  

 

The cis- and gem- isomers have the following symmetry elements: E, C2, and 2 v.  (The 1,1- (or 

gem-) isomer has the same elements as the cis- isomer.)  The classification of the molecule goes 

as follows: 

 

1. Is the molecule linear?      No 

2. Does the molecule have two or more Cn3 axes?   No 

3. Does the molecule have a Cn axis?     Yes (n = 2) 

4. Are there n C2 axes perpendicular to the principle axis?  No 

5. Does the molecule have a h plane?     No 

6. Does the molecule have n v planes?    Yes  

 

➔ The cis-isomer belongs to the C2v point group. 

 

The trans-isomer has the following symmetry elements: E, C2, h, and i.  The classification of the 

molecule goes as follows: 

 

1. Is the molecule linear?      No 

2. Does the molecule have two or more Cn3 axes?   No 

3. Does the molecule have a Cn axis?     Yes (n = 2) 

4. Are there n C2 axes perpendicular to the principle axis?  No 

5. Does the molecule have a h plane?     Yes  
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➔ The trans-isomer belongs to the C2h point group. 

 

 

Multiplication Operation for Symmetry Elements 
 

 Multiplication is fairly simple when it comes to symmetry operations. One simply applies 

the operations from right to left. Going back to the tennis racket example, it is fairly simple to 

visualize each symmetry element. To show this, it is useful to construct a group multiplication 

table.  To do this, it is useful to pick a corner of the object and imagine where it is transported 

under a pair of sequential operations.  Then imagine what operation will affect the same 

transformation directly. By applying them pairwise, one can generate the group multiplication 

table: 

 

C2v E C2 v v
’ 

E E C2 v v
’ 

C2 C2 E v
’ v 

v v v
’ E C2 

v
’ v

’ v C2 E 

 

What should jump right out from this multiplication table is that the group C2v 1) is abelian 

(actually, this will become clear after the term is defined) and 2) has the property that each 

element happens to be its own inverse! For some objects (such as a three-legged stool or an 

ammonia molecule) this will not be the case. 

 

More definitions: Order and Class 
 

An important definition is the order of a group.  The order (h) is simply the number of 

symmetry elements in the group.  For the C2v point group, the order is h=4. 

Another important concept defines the number of classes of operations a point group 

contains.  Two operations (A and B) belong to the same class if there is a third operation (C) in 

the group that relates them by the similarity transform 

 

C-1AC = B 

 

According to this definition, the operations A and B are said to be complementary.  A 

complete set of complementary operations within a group defines a class.  This will be 

demonstrated later, using the C3v point group operations. 

In the case of the C2v point group, no two elements are in the same class.  This has some 

very important ramifications for the point group. A group for which this the case is said to be an 

abelian group. Not all point groups will have this property however. 
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Representations 
 

 A representation is any mathematical construct that will reproduce the group 

multiplication table.  In general, there are an infinite number of representations possible for a 

given group, however, most of them will be related through simple relationships, and thus can be 

constructed from (or reduced to) other representations.  Those that cannot be reduced to linear 

combinations of other representations are called irreducible representations.  The irreducible 

representations are particularly useful as they can be used to predict the mathematical properties 

of any function that is an eigenfunction of all of the symmetry elements of a group.  The number 

of classes of operations always gives the number of irreducible representations.  Each irreducible 

representation can be labeled as i. 

To construct a representation for a group, one must assign each operation a mathematical 

element.  For the C2v point group, we can get away with using either 1 or –1 for each element.  

(This is a consequence of each operation belonging to its own class.)  The simplest 

representation can be constructed by assigning each symmetry element as 1.  The group 

multiplication table will hold, as can be seen below. 

 

C2v 1 1   

1 1 1   

1 1 1   

   1 1 

   1 1 

 

 

Note that each product gives a value that corresponds to the correct element.  For 

example, we let C2 = 1 and v = 1.  The product of C2*v yields v’.  And since the value we 

assigned v’ = 1 . . and 1*1 = 1 . . everything worked.  This particular representation seems 

pretty trivial since it has to work for any multiplication table that can ever be written!  In fact, 

every point group has this type of representation.  Since 1 gives all of the elements of this 

representation, this is called the totally symmetric representation. 

Another representation (2) can be constructed in which E and C2 are represented by a 1 

and v and v’ are represented by –1. In this case, the multiplication table looks as follows: 

 

C2v 1 1 − − 

1 1 1 − − 

1 1 1 − − 

− − − 1 1 

− − − 1 1 

 

It should be clear again (or easily enough verified) that this has the same pattern as the group 

multiplication table. 
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Two other representations can be constructed in this manner (with all of the elements 

given as either 1 or –1).  Together with the first representation, these can be summarized as in the 

following table. 

 

C2v  E C2 v v’ 

1 A1 1 1 1 1 

2 A2 1 1 -1 -1 

3 B1 1 -1 1 -1 

4 B2 1 -1 -1 1 

 

These irreducible representations (i) go by a standardized set of naming rules.  First, the 

irreducible representations are all singly degenerate (no two-by-two or three-by-three matrices 

were needed for the representations) so all of the irreducible representations are given the symbol 

A or B.  A is used if the representation is symmetric (1) with respect to the principle rotation axis 

(C2) and B if it is antisymmetric (-1) with respect to the principle axis.  The subscript is 1 if the 

representation is symmetric with respect to the v reflection plane, and 2 if the representation is 

antisymmetric with respect to this plane of reflection. If an irreducible representation requires a 

set of two-by-two matrices, the representation is designated E, and three-by-three matrix 

irreducible representations are labeled T.   

We’ll discuss more on the difference between a reducible and irreducible representation 

later.  First, lets work through a slightly more difficult point group.  The C3v point group is not 

abelian and requires matrices for some of the irreducible representations. 

 

The Symmetry of a Triangular Pyramid: a more complex point group 
 

An example of a point group that requires two-by-two matrix elements for the irreducible 

representations is the C3v point group.  This point group (which describes the symmetry elements 

of an ammonia molecule or a pyramid with an equilateral triangular base) consists of the 

symmetry elements E, C3, C3’ (or C3
2), v, v’ and v”. 

 

In the figure to the left, the C3 axis runs perpendicular to the base of 

the pyramid (you are looking straight down on the top of the pyramid) 

and the C3 operation might 

correspond to a clockwise rotation of 

the figure about that axis.  The C3’ 

axis is the same as the C3 axis, but the 

C3’ operation corresponds to a 

counterclockwise rotation by 2/3 

radians.  Note that this operation is 

equivalent to performing the C3 

operation twice (hence the alternative notation of C3
2.)  The v, 

v’ and v” elements are reflection planes that lie perpendicular 
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to the base, but each containing one edge of the pyramid.  The reader is left to imagine the 

identity element. 

 

If the corners of the base of the pyramid are labeled for convenience, the effect of each symmetry 

operation can be represented as follows. 

 

E    * (1,2,3)  = (1,2,3)  v  * (1,2,3)  = (1,3,2) 

C3  * (1,2,3)  = (3,1,2)  v’ * (1,2,3)  = (3,2,1) 

C3
2 * (1,2,3)  = (2,3,1)  v” * (1,2,3)  = (2,1,3) 

 

Following these permutations, it is possible to construct the group multiplication table.   The 

group multiplication table for this group (C3v) looks as follows: 

 

C3v E C3 C3
2 v v’ v” 

E E C3 C3
2 v v’ v” 

C3 C3 C3
2 E v” v v’ 

C3
2 C3

2 E C3 v’ v” v 

v v v’ v” E C3 C3
2 

v’ v’ v” v C3
2 E C3

 

v” v” v v’ C3 C3
2 E 

 

From this information, it is possible to separate the operations into classes.  Note, for example 

that (v)
-1 = v and (v’)

-1 = v’ and (v”)-1 = v”.  Using these relationships, the similarity 

transforms of C3 involving these operations all yield C3
2. 

 

(v)
-1 * C3 * v = (v * C3) * v = v” * v  = C3

2 

(v’)
-1 * C3 * v’ = (v’ * C3) * v’ = v * v’  = C3

2 

(v”)-1 * C3 * v” = (v” * C3) * v” = v’ * v”  = C3
2 

 

Similarly, the similarity transforms on C3
2 using these operations all yield C3. 

 

(v)
-1 * C3

2 * v = (v * C3
2) * v = v’ * v  = C3 

(v’)
-1 * C3

2 * v’ = (v’ * C3
2) * v’ = v” * v’  = C3 

(v”)-1 * C3
2 * v” = (v” * C3

2) * v” = v * v”  = C3 

 

This is sufficient to indicate that the operations C3 and C3
2 belong to the same class.  However, to 

show that these are the only two operations in this class. Consider the similarity transforms based 

on the operators E, C3 and C3
2 on C3: 

 

()-1 * C3 *  = ( * C3) *  = E * C3  = C3 

(C3)
-1 * C3 * C3 = (C3

2 * C3) * C3 = E * C3  = C3 

(C3
2)-1 * C3 * C3

2 = (C3 * C3) * C3
2 = C3

2 * C3
2  = C3 
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The fact that the result of a similarity transform on either C3 or C3
2 never results in v, v’ or v”, 

is a consequence of the proper rotation operations belonging to a 

different class than the reflection planes.  In fact, there are three 

classes of operations for this point group.  This implies that there 

are three irreducible representations for this point group. 

 

Another useful approach is to use matrix operators to affect the 

changes to the object caused by the symmetry operation.  The 

choice of matrix operators depends on the basis set of functions 

being used to model the system.  In this case, we will use 

position vectors of the corners of the bas of the pyramid.  Other 

choices of basis might be the atomic orbitals on the atoms in a molecule.  This is a very 

convenient choice when the task of constructing symmetry-adapted linear combinations of 

atomic orbitals for the purpose of modeling molecular orbitals.  But I digress . . . 

 

Consider the position vectors of the corners of the base of our trigonal pyramid.  They can be 

specified by indicating the (x, y, z) coordinates if the origin is located in the plane of the base 

along the axis where all of the symmetry elements intersect. 

 

Corner x y z 

1 0 
3

1  0 

2 1/2 
32

1−  0 

3 -1/2 
32

1−  0 

4 0 0 h 

 

Only corners 1, 2 and 3 will be important since none of the symmetry elements moves the fourth 

corner!  Assuming unit length for the base edges and a height of h for the pyramid, the following 

table gives the (x, y, z) coordinates for each of the four corners.   

 

From the previous discussion, we have already determined the effects of each of the symmetry 

operations. 

 

E    * (1,2,3)  = (1,2,3)  v  * (1,2,3)  = (1,3,2) 

C3  * (1,2,3)  = (3,1,2)  v’ * (1,2,3)  = (3,2,1) 

C3
2 * (1,2,3)  = (2,3,1)  v” * (1,2,3)  = (2,1,3) 

 

The task now is to construct matrix representations for each of the symmetry operations that will 

affect the above stated changes when matrix multiplication is used as the operation. 

 

The identity element is easy.  It will be the 3x3 identity matrix given by 

 
















=

100

010

001

E
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This is easily confirmed since 

 

 

 

for any choice of x, y and z.  The other operations are a little trickier, but not too hard.  It can be 

shown that the matrix that affects a rotation of  radians about the z-axis is given by 

 















 −

100

0cossin

0sincos





 

 

So that the resultant of this operation is given by 

 

















+

−

=






























 −

z

yx

yx

z

y

x









cossin

sincos

100

0cossin

0sincos

 

 

For a rotation of 2/3 radians, it is useful to note the following. 

 

cos(2/3) = -1/2 

sin(2/3) = 3 /2 

 

So the transformation of corner 1 of the pyramid is accomplished as follows for the C3 operation. 

 

















−

−

=
































−

−−

0
32

1

2/1

0

3/1

0

100

02/12/3

02/32/1

 

 

The operation has transformed corner 1 into corner 3.  It is also easily shown that the operator 

matrix also transforms corner 2 into corner 1, and corner 3 into corner 2.  This is just as expected 

according to the expression shown above: 

 

C3 * (1, 2, 3) = (3, 1, 2) 

 

Additionally, the matrix must satisfy the multiplication table relationship of C3*C3 = C3
2. 

 

















=
































z

y

x

z

y

x

100

010

001
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















−−

−

=

















−

−−

















−

−−

100

02/12/3

02/32/1

100

02/12/3

02/32/1

100

02/12/3

02/32/1

 

 

This is the rotation matrix for a rotation of –2/3 radians.  Hence, the product worked out as 

expected since the C3
2 operation is equivalent to the rotation of –2/3 radians. 

 

The matrix representations for the v planes can be worked out by one of two methods.  One is to 

set up the matrix equation for how a point is transformed.  The other is by using the group 

multiplication table to generate a matrix as the product of two other operations in the group for 

which the matrix has already been established. 

 

To demonstrate these methods, recall from above that the v operation exchanges corners 2 and 

3. The matrix for this operation must satisfy the following expression: 

 

















−

−

=
















−
















0

321

21

0

321

21

333231

232221

131211

RRR

RRR

RRR

 

 

The matrix that will affect this transformation is: 

 















−

100

010

001

 

 

Now, using the group multiplication table, we can generate v’ and v” by the relationships 

 

v * C3
2 = v’ 

v * C3 = v” 

or 

 

'

100

02/12/3

02/32/1

100

02/12/3

02/32/1

100

010

001

v=

















−−

−

=

















−−

−















−

 

"
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02/12/3

02/32/1
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02/32/1
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v=

















−=

















−

−−















−
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The set of matrices can now be used as a representation of the group.  However, these matrices 

can be seen as a reproducible representation of the group since they are in block-diagonal form. 

 

















=

100

010

001

E  











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



−
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=
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
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


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





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−

=
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2
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













−

=
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010
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
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













−−

−

=

100

02/12/3
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'v  

















−=

100

02/12/3

02/32/1

"v  

 

This representation can be broken down into two simpler representations.  The first consists only 

of the lower right block of each of the matrices above.  This yields the totally symmetric 

representation.  The other is a representation of 2x2 matrices that are made from the upper left 

block of each of the matrices above.  There is one other irreducible representation for the C3v 

point group.  It is given in the table below without derivation, but it is easy to demonstrate that it 

satisfies the group multiplication table. 

 

 

C3v  E C3 C3
2 

1 A1 1 1 1 

2 A2 1 1 1 

3 E 










10

01
 















−−

−

2/123

232/1
 














−

−−

2/123

232/1
 

 

 

 

The “Great Orthogonality Theorem” 
 

 One thing that is important about irreducible representations is that they are orthogonal.  

This is the property that makes group theory so very useful in chemistry, because orthogonality 

makes integrals zero.  It’s always easier to do the integrals when orthogonality tells us the result 

will be zero before doing any complicated math! 

 

The Great Orthogonality Theorem (GOT) can be stated: 

 

C3v  v v’ v” 

1 A1 1 1 1 

2 A2 -1 -1 -1 

3 E 








−

10

01
 















− 2/123

232/1
 















−−

−

2/123

232/1
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   ''

*

'')()( nnmmij

jiR

nmjmni
ll

h
RR =  

 

(Any theorem with that many subscripts must have something truly useful to say!)  In this 

notation, i(R)mn indicates the row m, column n element of the ith irreducible representation for 

symmetry operation R.  The m and n are needed since not all irreducible representations are 

made up of just 1 and –1.  Many irreducible representations need to use matrices to represent 

each symmetry element.  For these cases, li gives the dimension of the matrices used in the i.  In 

our example of the C2v point group, all irreducible representations have l =1, so the GOT can be 

stated more simply (for this point group specifically) as 

 

   ij

R

ji hRR =
*

)()(  

 

Consider applying this statement to the A2 and B1 irreducible representations (2 and 3) for the 

C2v point group. 

 

  

0

1111

)1)(1()1)(1()1)(1()1)(1(

)'()'()()()()()()()()( 3232232232

*

32

=

+−−=

−−+−+−+=

+++= vvvv

R

CCEERR 

 

 

Similarly, considering using the GOT on just 4 (the B2 irreproducible representation) yields the 

following 

 

  

4

1111

)1)(1()1)(1()1)(1()1)(1(

)'()'()()()()()()()()( 4444242444

*

44

=

+++=

+−−+−−+=

+++= vvvv

R

CCEERR 

 

  

Recall that the order of the group (h) is 4 because there are four symmetry elements in the group.   

 

In the case of the C3v point group, there is a 2x2 matrix representation.  Consider the upper right 

member of each of the 3 (E) matrices (row 1, column 2) and apply the GOT to these elements 

along with the elements of 1 (A1). 

 

  

0

)2/3)(1()2/3)(1()0)(1()2/3)(1()2/3)(1()0)(1()()( 1231

=

+−++−++=
R

RR
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Similarly, applying the GOT to the row 1, column 1 elements of 3 (E) we see 

 

  

3

222222

113113

/

2/6

3

)2/1()2/1()1()2/1()2/1()1()()(

lh

RR
R

=

=

=

++−+−+−+=

 

 

Now tell me . . isn’t that truly a Great Orthogonality Theorem?  (Now how much would you 

pay?)  Once we introduce the concept of character, we will restate the GOT in terms of class 

characters.   

 

Character and Character Tables 
 

 Most summaries of group theory do not give the full matrix specifications for each 

irreducible representation in each important point group.  Rather, a very useful quantity is 

defined, called the character.  An important property that elements of the same class will share 

is that they have the same character.  As such, it is only necessary to show the character once for 

each class of operations in the group. 

 

The character of an element is given by the sum of the diagonal elements of the matrix used to 

represent the symmetry operation. 

 

=
m

mmii RR )()(  

 

C3v E C3 v 

A1 1 1 1 

A2 1 1 -1 

E 










10

01
 







 −

)3/2cos()3/2sin(

)3/2sin()3/2cos(




 









−10

01
 

  

To evaluate the characters of each of the classes within each irreproducible representation, we 

need only generate a representation for one operation within each class.  The three irreducible 

representations for some characteristic operators in each class can be expressed as follows: 

 

Using the expressions above, the character table for the C3v group can be expressed as 

 

C3v E 2 C3  v 

A1 1 1 1 

A2 1 1 -1 
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E 2 -1 0 

 

Note that the character of the identity element is always given as the dimension of the matrices 

used in the irreducible representation. 

 

ii lE =)(  

 

The GOT can be expressed in terms of characters.   

 

 =
R

ijji hRR  )()(  

 

This statement has a number of important and useful properties and consequences.  One 

relationship deals with the sum of the squares of the characters of the identity elements. 

 

  hE
i

i =
2

)(  

 

These expressions can be used to find and verify the characters for other point groups.  For 

example, consider the partial character table for the point group C4v. 

 

 

A typical kind of exam or quiz question might be to fill in the missing values.  In this case, all of 

the values are missing!  So let’s tackle the problem based on what we know from definitions, and 

complete the problem by using of the GOT.   

 

C4v E 2 C4 C2 2 v 2 d 

A1      

A2      

B1      

B2      

E      

 

First off, the order of the group is h = 8.  Second, every group has a totally symmetric 

representation.  This is the A1 representation and has members that are all 1.  Let’s fill that in 

(using red for clarity.) 

 

C4v E 2 C4 C2 2 v 2 d 

A1 1 1 1 1 1 

A2      

B1      

B2      

E      
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Additionally, we can fill in the column for the identity element.  All of the A and B 

representations are singly degenerate, and the E representation is doubly degenerate.  So using 

the expression  

 

  hE
i

i =
2

)(  

 

That yields the following (shown in red): 

 

C4v E 2 C4 C2 2 v 2 d 

A1 1 1 1 1 1 

A2 1     

B1 1     

B2 1     

E 2     

 

And it clearly satisfies 

 

 

h

E
i

i

==

++++=

8

)2()1()1()1()1()( 212122


 

 

Now using the definition that A representations have a character of 1 for the (are symmetric with 

respect to)  the principle rotation axis and B representations have a character of –1 for (or are 

antisymmetric with respect to) the principle axis rotation.  Thus, we can fill in 

 

C4v E 2 C4 C2 2 v 2 d 

A1 1 1 1 1 1 

A2 1 1    

B1 1 -1    

B2 1 -1    

E 2 ?    

 

But should we do about the character of the C4 operation under the irreducible doubly degenerate 

representation E?  One solution comes from another important consequence of the GOT.  This 

can be stated as 

 

mn

i

nimi hRR  = )()(  

 

Using this relationship, we can solve for the character of the C4 operation under the E irreducible 

representation. 
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 
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)(2)()()( 44

=+−+−++=

= 

x

CECE
i

ii

i

ii 
 

 

The only value of x that will satisfy this expression is x = 0.  We can enter this value and also 

apply the definitions that the A1 and B1 representations are symmetric with respect to the v 

operation and the A2 and B2 representations are antisymmetric with respect to v. 

 

C4v E 2 C4 C2 2 v 2 d 

A1 1 1 1 1 1 

A2 1 1  -1  

B1 1 -1  1  

B2 1 -1  -1  

E 2 0  ?  

 

Again, the question mark can be removed as above. 

 

 

0)2(2)1)(1(2)1)(1(2)1)(1(2)1)(1(2

)(2)()()(

=+−++−+=
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x

EE
i

vii

i

vii 
 

 

Once again, as luck would have it, the only value of x that satisfies the equation is x = 0.  Now, 

we can apply the GOT to the representations for A1, and A2 to generate an equation with two 

unknowns to determine the characters of C2 and d for representations A2 and B1.  We can solve 

it because we know x and y can only be 1 or –1.  (These are the only values possible for singly 

degenerate representations.) 

 

021

0)1(2)1)(1(2)1()1)(1(2)1)(1(

)()(2)()()()( 424121

=++=

=+−+++=

++=

yx

yx

CCEERR
R

ji 

 

 

C4v E 2 C4 C2 2 v 2 d 

A1 1 1 1 1 1 

A2 1 1 1 -1 -1 

B1 1 -1  1  

B2 1 -1  -1  

E 2 0  0  

 

The only combination that works is x = 1 and y = -1.  The character table now looks as follows: 

 

Completion of the rest of the character table is left as an exercise. 
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Direct Products 
 

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude 

squared of the transition moment matrix element. 

 

Intensity  ( ) ( )
2

*
"'  d


 

 

By knowing the symmetry of each part of the integrand, the symmetry of the product can be 

determined as the direct product of the symmetries of each part (’)*, (”) and .  This is 

helpful, since the integrand must not be antisymmetric with respect to any symmetry elements or 

the integral will vanish by symmetry.  Before exploring that concept, let’s look at the concept of 

direct products. 

 

This is a concept many people have seen, in that the integral of an odd function over a symmetric 

interval, is zero.  Recall what it means to be an “odd function” or an “even function. 

 

Symmetry definition Integreals 

Even f(-x) = f(x)  −
=

a

a

a

dxxfdxxf
0

)(2)(  

Odd f(-x) = -f(x) −
=

a

a
dxxf 0)(  

 

Consider the function ( ) 2

3)( 3 xexxxf −−= .  A graph of this function looks as follows: 

 

 
 

One notes that the area under the curve on the side of the function for which x > 0 has exactly the 

same magnitude but opposite sign of the area under the other side of the graph.  Mathematically, 

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

( ) 2

3)( 3 xexxxf −−=
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It is also interesting to note that the function f(x) can be expressed as the product of two 

functions, one of which is an odd function ( xx 33 − ) and the other which is an even function (
2xe− ).  The result is an odd function.  By determining the symmetry of the function as a product 

of the eigenvalues of the functions with respect to the inversion operator, as discussed below, 

one can derive a similar result.   

 

The even/odd symmetry is an example of inversion symmetry.  Recall that the inversion operator 

(in one dimension) affects a change of sign on x. 

 

)()(ˆ xfxfi −=  

 

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either 

+1 or –1.  For the function used in the previous example,  

 

)()()( xhxgxf =  

 

where 

 

xxxg 3)( 3 −=          and 
2

)( xexh −=  

 

Here, g(x) is an odd function and h(x) is an even function.  The product is an odd function.  This 

property is summarized for any )()()( xhxgxf = , in the following table. 

 

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x) 

even even even 1 1 1 

even odd odd 1 -1 -1 

odd odd even -1 -1 1 

 

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for the 

irreducible representation by which the function transforms!  In a similar manner, any function 

that can be expressed as a product of functions (like the integrand in the transition moment 

matrix element) can be determined as the direct product of the irreducible representations by 

which each part of the product transforms. 

Consider the point group C2v as an example.  Recall the character table for this point 

group. 
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C2v E C2 v v’    

A1 1 1 1 1 z  x2-y2, z2 

A2 1 1 -1 -1  Rz xy 

B1 1 -1 1 -1 x  Ry xz 

B2 1 -1 -1 1 y Rx yz 

 

The direct product of irreducible representations can by the definition 

 

)()()( RRR jiprod  =  

 

So for the direct product of B1 and B2, the following table can be used. 

 

C2v E C2 v v’ 

B1 1 -1 1 -1 

B2 1 -1 -1 1 

B1B2 1 1 -1 -1 

 

The product is actually the irreducible representation given by A2!  As it turns out, the 

direct product will always yield a set of characters that is either an irreducible representation of 

the group, or can be expressed as a sum of irreducible representations.  This suggests that a 

multiplication table can be constructed.  An example (for the C2v point group) is given below. 

Studying this table reveals some useful generalizations.  Two things in particular jump 

from the page.  These are summarized in the following tables. 

 

 A B     1 2 

A A B    1 1 2 

B B A    2 2 1 

C2v A1 A2 B1 B2 

A1 A1 A2 B1 B2 

A2 A2 A1 B2 B1 

B1 B1 B2 A1 A2 

B2 B2 B1 A2 A1 

 

This pattern might seem obvious to some.  It stems from the idea that  

 

symmetric*symmetric = symmetric 

symmetric*antisymmetric = antisymmetric 

antisymmetric*antisymmetric = symmetric 

 

Noting that A indicates that an irreducible representation is symmetric with respect to the C2 

operation and B indicates that an irreducible representation is antisymmetric . . and that the 
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subscript 1 indicates that an irreducible representation is symmetric with respect to the v 

operation, and that a subscript 2 indicates that an irreducible representation is antisymmetric . . 

the rest seems to follow!  Some point groups have irreducible representations use subscripts g/u 

or primes and double primes.  The g/u subscript indicates symmetry with respect to the inversion 

(i) operator, and the prime/double prime indicates symmetry with respect to a  plane (generally 

the plane of the molecule for planar molecules).   

 

This method works well for singly degenerate representations.  But what does one do for 

products involving doubly degenerate representations?  As an example, consider the C3v point 

group. 

 

 

 

 

 

 

Consider the direct product of A2 and E. 

 

C3v E 2 C3  v 

A2 1 1 -1 

E 2 -1 0 

A2E 2 -1 0 

 

This product is clearly just the E representation.  Now one other example – Consider the product 

EE. 

 

C3v E 2 C3  v 

E 2 -1 0 

E 2 -1 0 

EE 4 1 0 

 

To find the irreducible representations that comprise this reducible representation, we proceed in 

the same manner as determining the number of vibrational modes belonging to each symmetry.  

 

 

 

  1)0)(0(3)1)(1(2)4)(2(
6

1

1)0)(1(3)1)(1(2)4)(1(
6

1

1)0)(1(3)1)(1(2)4)(1(
6

1

2

1

=+−+=

=−++=

=++=

E

A

A

N

N

N

 

 

This allows us to build a table of direct products. Notice that the direct product always has the 

total dimensionality that is given by the product of the dimensions.  

C3v E 2 C3  v   

A1 1 1 1 z  

A2 1 1 -1  Rz 

E 2 -1 0 (x, y) (Rx, Ry) 
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C3v A1 A2 E 

A1 A1 A2 E 

A2 A2 A1 E 

E E E A1+ A2+E 

 

 The concepts developed in this chapter will be used extensively in the discussions of 

vibrational, rotational and electronic degrees of freedom in atoms and molecules. 
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Problems 
 

1. Find the symmetry elements and point groups for the following molecules 

a. SF4 

b. CHCl3 

c. Pyridine 

d. Naphthalene 

e. ICl5 

f. PCl5 

 

2. Consider diazine, which has three isomers.  Determine which isomer(s) has/have C2v 

symmetry and which has/have D2h symmetry. 

 

3. Complete the following character table. 

 

 E 2 A 2 B C 3 D 3 F 

A1 1 1 1 1 1 1 

A2 1 1 1 1 -1 -1 
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B1   1    

B2 1 -1 1 -1 -1 1 

E1   1    

E2   -1    

 

 

4. Complete the following direct product table. 

 

C4h Ag Bg Eg
 Au Bu Eu 

Ag Ag Bg Eg
 Au Bu Eu 

Bg Bg      

Eg Eg  Ag+Bg+Eg   Au+Bu+Eu 

Au Au   Ag   

Bu Bu      

Eu Eu      

 

 

5. Consider the following group multiplication table.  Separate the operations into classes. 

 

 E A B C D F 

E E A B C D F 

A A B E F C D 

B B E A D F C 

C C D F E A B 

D D F C B E A 

F F C D A B E 

 

 

6. Demonstrate that the A2, B1, B2 and E irreducible representations are orthogonal to the A1 

irreducible representation under the point group C4v. 

 

7. A point group has 8 operations which fall into five classes.  How many irreducible 

representations will it have?  How many will be singly degenerate? How many will be 

doubly degenerate? 
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