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Chapter 8: Polyelectronic Atoms 
 

One of the shortcomings of Bohr’s model of the hydrogen atom was that it was not 

extensible to atoms that had more than one electron.  The newly emerging quantum mechanics 

was hoped to do a better job.  Unfortunately, while the hydrogen atom problem is solvable 

analytically, issues arise when an attempt is made to solve the problem for atoms with multiple 

electrons.  Regardless, the first step in deriving this theory, then, is writing the Hamiltonian for 

the System. 

 

Potential Energy and the Hamiltonian 
 

The potential energy of a poly electronic atom is all electrostatic in nature.  There are 

attractive forces between electrons and the nucleus and repulsive forces between the electrons 

themselves.  For simplicity, we will consider the helium atom first, which has a nucleus with a 

charge of +2 electron charges and two electrons with -1 charges each. 

 

 
 

The Hamiltonian for this system will have kinetic energy terms for both electrons and 

three terms to describe the potential energy in the system.  The attractive forces will lead to 

negative contributions to the potential energy and the repulsive (electron-electron) force will 

contribute a positive value to the potential energy.  In atomic units, this yields 

 

1221

11

122ˆˆˆ
rrr

TTH −+−−+=  

The -1/r12 (electron-electron repulsion term) makes the problem unseparable into terms that 

relate only to a single electron.  This creates a three body problem, which cannot be solved 

analytically.  

 

The Orbital Approximation 
 

The way we deal with this problem is to simply ignore the electron-electron repulsion 

term in the solution, and treat it phenomenologically after the fact.  This is known as the orbital 

approximation, as it allows for the separation of the Hamiltonian into two terms, one of which 

deals in electron 1 and the other in electron 2. 
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 This is also the approximation that allows us to write electronic configurations for 

polyelectronic atoms.  In the electronic configuration, we assume that each electron has a 

hydrogen-like wavefunction. 

 

The Aufbau principle 
 

The aufbau principle (German for “building up” principle), or building up principle, 

suggests that we can construct a description of an atom my adding subatomic particles one at a 

time, moving through the periodic table until we reach the element of interest.   

Under this description, a carbon atom (atomic number 6) is similar to a boron (atomic 

number 5) atom, but with one additional proton and some additional neutrons in the nucleus and 

one additional electron added to the electron cloud. 

 

Electronic Configurations 
 

Consider carbon, which is atomic number 6.  Most chemists advanced to a level to which 

they are prepared to take a course in physical chemistry can construct an electronic configuration 

for 6C. 

 

6C: [He] 2s2 2p2 

 

Or for 23V, one would write 

 

23V: [Ar] 4s2 3d3 

 

It is a curious thing that that the 4s subshell fills before the 3d subshell, since in atomic 

hydrogen, the 3d subshell has a lower energy.  However, in polyelectronic atoms, (specifically 

for K and Ca) the 4s subshell is actually lower in energy than the 3d subshell.  As such, 

according to the aufbau principle, it is the 4s subshell that fills first of the two. 

 However, it is important to note that the relative energies of the subshells change with 

changing nuclear charge and differing numbers of electrons.  For example, in Sc, it is the 4s 

electrons that are higher in energy than the 3d electron.  As such, the 4s electrons are the first to 

be removed when the atom is ionized. 

 

Shells, Subshells, Orbitals and Spin 
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It is useful to develop some nomenclature to describe the different combinations of quantum 

numbers that describe the different wavefunctions for the electrons in an atom.  In order to do 

this, we need ot define a few terms that will come in handy later. 

i. shell – characterized by the principle quantum number n 

ii. subshell – characterized by n and the angular momentum quantum number l 

iii. orbital – characterized by n, l and the azimuthal quantum number ml. 

 

In addition to shells, subshells and orbitals, electrons have spin.  The spin quantum 

number of an electron is s = ½.  But generally electrons are described as being “spin up” or “spin 

down” based on the value of the z-axis component of the spin, ms.  ms can take values of +½ and 

-½.  Each orbital can hold two electrons.  If there are two electrons in the orbital, the spins must 

be pairs such that one is “spin up” and the other is “spin down.” 

 

Orbital Diagrams 
 

Orbital diagrams are handy to depict electronic configurations without having to resort to 

just quantum numbers.  In an orbital diagram, each orbital is depicted using a box or a line and 

electrons are depicted with arrows pointing either up or down depending on the value of ms. 

 

Angular Momentum Coupling 
 

Any system that has more than one source of angular momentum will be subject to coupling 

between those forms of angular momentum.  For example, consider the emission from an excited 

hydrogen atom, for which the electron is in the 2p subshell the atom emits a photon as the 

electron relaxes to be in the ground 1s subshell.  In fact, this transition is doubled as two lines 

can be observed if viewed at high enough resolution. 

 
 

The transition is depicted in the above energy level diagram.  The upper (2p) state is 

shown to be split into two components, one labeled 2P3/2 and one 2P1/2.  The lower state has only 
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one component, labeled 2S1/2.  Part of the job of quantum mechanics will be to describe this 

splitting.  The explanation comes in the form of angular momentum coupling. 

There are two sources of angular momentum in the electronic wavefunction of the 

atom: the orbital angular momentum (l = 1) and the electron spin angular momentum (s = ½.)  

These angular momenta can couple to yield a total angular momentum J = 2
3  or ½ .  The 

resultant angular momentum can be determined by the two angular momentum vectors adding in 

parallel of antiparallel.  The result is to split the state into two components. 

 

Term Symbols 
 

Angular momentum in atoms can be summarized using a term symbol.  The term 

symbol will indicate a number of different types of angular momentum such as the total orbital 

angular momentum, total spin angular momentum and the total (spin + orbit) angular 

momentum.  In the limit that Russell-Saunders coupling (which will be described in detail 

shortly) provides a a good description of the atom, the term symbol used will be of the form 

 
(2S+1)LJ 

 

Where S is the total spin angular momentum and (2S+1) is the spin degeneracy, L is the total 

orbital angular momentum, and J gives the total of the spin-orbit angular momentum.  (The 

convention will be followed that lower-case letters are used to indicate one-electron properties 

and upper-case letters are used to describe total atom properties.) 

L and S must be calculated using vectoral sums of the single-electron angular momenta 

(whether orbital or spin.)  The vectoral sums can yield several values depending on the angle 

between the vectors.  The possible magnitudes of the resultant vectors will be quantized, with the 

range of magnitudes being given by a Clebsch series.  Consider the addition of the angular 

momentum vectors for two electrons in p (l = 1) subshells. 

 

L = l1   l2  

= l1 + l2, l1 + l2 -1, l1 + l2 -2, … , | l1 - l2| 

 

 
 

As such, the possible values of L for a p2 configuration are 

 

L = l1   l2 = 1   1 
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= 2, 1, 0 

 

As in the case of one-electron orbital angular momenta, the total orbital angular momentum is 

signified using a letter.  The following table shows which letters are used. 

 

One-electron Total Atom 

l Designation L Designation 

0 s 0 S 

1 p 1 P 

2 d 2 D 

3 f 3 F 

4 g 4 G 

 

The possible values of S, are given by s1   s2.  (For all electrons, s = ½.) 

 

S = s1   s2 = ½   ½ 

= 1, 0 

 

So the possible values of (2S + 1) are 3 and 1.  In other words, both triplet and singlet states arise 

from a p2 configuration. 

 However, not all possible combinations of L and (2S+1) are possible.  In fact, only those 

values that arise from distinguishable combinations of miscrostate quantum number 

combinations are possible. 

 

The Microstate Method 
 

The number of distinguishable microstates for a given electronic configuration is given by 
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!
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where G is the number of spin-orbit states possible for a single electron and N is the number of 

electrons.  For a p2 configuration, G = 6 and N = 2.  So the number of microstates is given by 
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So there are 15 possible microstates possible.  Each microstate will be characterized by a value 

of ml and ms for each electron under consideration.  A complete set of microstates for a p2 

configuration is shown in the table below.  ml and ms are indicated for electrons 1 and 2 in the 

atom.  Notice that only distinguishable combinations are shown! 
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 ml ms 
ML MS Designation 

 1 2 1 2 

1 +1 +1 +½ -½ +2 0 1D 

2 +1 0 +½ +½ +1 +1 3P 

3 +1 0 +½ -½ +1 0 1D 

4 +1 -1 +½ +½ 0 +1 3P 

5 +1 -1 +½ -½ 0 0 1D 

6 +1 0 -½ +½ +1 0 3P 

7 +1 0 -½ -½ +1 -1 3P 

8 +1 -1 -½ +½ 0 0 3P 

9 +1 -1 -½ -½ 0 -1 3P 

10 0 0 +½ -½ 0 0 1S 

11 0 -1 +½ +½ -1 +1 3P 

12 0 -1 +½ -½ -1 0 1D 

13 0 -1 -½ +½ -1 0 3P 

14 0 -1 -½ -½ -1 -1 3P 

15 -1 -1 +½ -½ -2 0 1D 

 

The “Designation” column in the above table is really for bookkeeping only.  For 

example, it should be noted that there are two miscrostates that yield ML = +1, MS = 0.  One has 

been designated 1D and the other 3P.  In fact, the wavefunctions needed to describe these term 

symbol components require linear combinations of both microstates. 

 

 The resulting microstates for a p2 configuration are 1D, 3P and 1S.  The methodology for 

determining this from the table of microstates is as follows: 

 

1. Find the largest value of ML and the largest value of MS that corresponds to that value. 

2. From these, find L and S for the term symbol. 

3. Mark combinations of ML and MS that match the pattern for a given term symbol. 

4. Repeat from step 1 for remaining microstates.  Keep repeating until there are no 

microstates left. 

 

It is very important to approach this process methodically or errors will occur in 

determining microstate-term symbol correlations. 

Utilizing this methodology to work through the above table, we start with the largest 

value for ML which is +2.  The largest value of MS that goes with it is 0.  This indicates L and S 

values of 2 and 1 respectively.  L = 2 indicates a D state.  S = 0 indicates that (2S + 1) = 1 (or a 

singlet state.)  So the resulting term is 1D.  This will have components of ML = +2, +1, 0, -1, -2.  

Each will have MS = 0.  This accounts for five of the microstates. 

The largest value of ML for the remaining microstates is ML = +1.  the largest value of MS 

that goes with ML = +1 is MS = +1.  This correlates to L = 1, S =1 or a 3P state.  There are nine 

combinations of microstates for this term symbol, one each for each combination of ML = +1, 0, 

-1 and MS = +1, 0, -1.   
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After these combinations are marked, the only remaining combination is ML = 0, MS = 0, 

which corresponds to a 1S state. 

The number of microstates used for a given term symbol can be determined from (2L+1) 

and (2S+1), the orbital and spin degeneracies respectively.  Consider the following table.  Notice 

that the total of (2L+1)(2S+1) is the same as the number of original microstates. 

 

 (2L+1) (2S+1) (2L+1)(2S+1) 
1D 5 1 5 
3P 3 3 9 
1S 1 1 1 

Total 15 

 

Spin-Orbit Coupling 
 

The one thing that has not been determined from the microstates themselves is the total 

angular momentum J, which is given by the vectoral sum of L and S.  J values must be 

determined for each term separately. This coupling of spin and orbit angular momenta will split 

the term states further.   

 

J = L   S 

 

 L S J Terms 
1D 2 0 2 1D2 
3P 1 1 2, 1, 0 3P2, 

3P1, 
3P0 

1S 0 0 0 1S0 

 

Again, the values of the spin-orbit degeneracies, given by (2J+1) can be used to determine if the 

coupling scheme has been done properly. 

 

 J (2J+1) 
1D2 2 5 
3P2 2 5 
3P1 1 3 
3P0 0 1 
1S0 0 1 

Total 15 

 

Again, notice that the total matches the original number of microstates. 

 

The Hole Rule 
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When dealing with a subshell that is more than half filled, it is oftentimes easier (or at 

least less tedious) to employ the hole rule.  The hole rule involves treating electron holes rather 

than the electrons themselves.  Consider 6C and 8O as an example of complementary atoms.  

Carbon has a p2 configuration and oxygen a p4 configuration.  (Added together, that makes a p6 

configuration, which closes the p-subshell and is why the two atoms are complementary.) 

 For each microstate in the p2 system, there exists one in the p4 system that when added 

together would complete the p-subshell.  An example is shown below. 

 

 
 

This relationship ensures that the exact same symmetry relationships hold for the p4 system as 

for the p2 system.  Hence, the term symbols that arise from a p4 system are 1D, 3P and 1S.  With 

spin-orbit coupling, the 3P will split into three components, 3P0, 
3P1 and 3P2.  Of these, 3P2 will 

have the lowest energy according to Hund’s rule 3b, as these terms arise from a system where the 

subshell is more than half filled. 

 

Hund’s Rules 
 

Hund’s rules are used to determine the lowest energy state within the manifold of states 

generated from a given electronic configuration.  The rules can be summarized as follows: 

 

Hund’s Rules 

1. The lowest energy state will be the one with the largest value of S. 

2. For multiple states with the same largest value of S, the lowest energy state will have the 

largest value of L. 

3. For states with the same values of L and S, the lowest energy state will have 

a. The smallest value of J, if the term arises from an electronic configuration in 

which the subshell is less than half filled 

b. The largest value of J, if the term arises from an electronic configuration in which 

the subshell is more than half filled 

 

For the case of a p2 configuration, the largest value of S generated is S = 1, for the 3P state.  And 

within this state, the lowest energy term will be 3P0, since p2 corresponds to a subshell that is less 

than half filled. 

 
Example: Determine the term symbols that arise from the p3 configuration of 7N. 
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Nonequivalent Electrons 
 

Consider a carbon atom in an excited state where the electronic configuration is given by 

 

6C: [He] 2s2 2p1 3p1 

 

This is an example of a pp configuration (which is different than a p2 configuration since the two 

electrons have different values of the principle quantum number n.  In this case, a number of 

microstate combinations become distinguishable that would not be before.  A complete set of 

microstates for a pp configuration is given in the table below.  In this case, since the electrons are 

not equivalent, it is possible for both to be in orbitals where ml = +1 with ms = +½ since they are 

in different subshells. 

 

 ml ms 
ML MS Designation 

 2p 3p 2p 3p 

1 +1 +1 +½ +½ +2 +1 3D 

2 +1 +1 +½ -½ +2 0 3D 

3 +1 +1 -½ +½ +2 0     1D 

4 +1 +1 -½ -½ +2 -1 3D 

5 +1 0 +½ +½ +1 +1 3D 

6 +1 0 +½ -½ +1 0 3D 

7 +1 0 -½ +½ +1 0     1D 

8 +1 0 -½ -½ +1 -1 3D 

9 +1 -1 +½ +½ 0 +1 3D 

10 +1 -1 +½ -½ 0 0 3D 

11 +1 -1 -½ +½ 0 0     1D 

12 +1 -1 -½ -½ 0 -1 3D 

13 0 +1 +½ +½ +1 +1 3P 

14 0 +1 +½ -½ +1 0 3P 

15 0 +1 -½ +½ +1 0      1P 

16 0 +1 -½ -½ +1 -1 3P 

17 0 0 +½ +½ 0 +1                 
3S 

18 0 0 +½ -½ 0 0                
3S 

19 0 0 -½ +½ 0 0 1S 

20 0 0 -½ -½ 0 -1                
3S 

21 0 -1 +½ +½ -1 +1 3D 

22 0 -1 +½ -½ -1 0 3D 

23 0 -1 -½ +½ -1 0     1D 

24 0 -1 -½ -½ -1 -1 3D 

25 -1 +1 +½ +½ 0 +1 3P 

26 -1 +1 +½ -½ 0 0 3P 

27 -1 +1 -½ +½ 0 0      1P 
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28 -1 +1 -½ -½ 0 -1 3P 

29 -1 0 +½ +½ -1 +1 3P 

30 -1 0 +½ -½ -1 0 3P 

31 -1 0 -½ +½ -1 0       1P 

32 -1 0 -½ -½ -1 -1 3P 

33 -1 -1 +½ +½ -2 +1 3D 

34 -1 -1 +½ -½ -2 0 3D 

35 -1 -1 -½ +½ -2 0     1D 

36 -1 -1 -½ -½ -2 -1 3D 

 

In this example, there are more term symbols generated due to the fact that the electrons 

are not in the same subshell.  The resulting term symbols are 3D, 3P, 3S, 1P, 1P and 1S.  As such, 

this set of microstates includes some combinations of ml and ms which would not be possible if 

the two electrons were in the same subshell. 

 

The Pauli Exclusion Principle 
 

One explanation as to why the differences between the term symbols that arise from a p2 

configuration relative to a pp configuration is the Pauli Exclusion principle.  The usual 

statement of the Pauli Exclusion Principle is that no two electrons in an atom can have the same 

set of four quantum numbers n, l, ml and ms.  Another explanation is to simply announce that  

 

Electrons are Fermions! 

 

This approach is useful if you happen to know the properties of Fermions, but does not provide 

much insight if you do not.   

 A Fermion is a particle with half-integral spin.  An obvious example (according to the 

statement above) is an electron which has s = ½.  Other examples include protons and neutrons 

and fluorine-19 nuclei (all with I = ½), aluminum-27 nuclei (I = 5/2) etc.  Fermions have the 

property that the total wavefunction of a system containing two equivalent fermions must change 

sign if the two particles are exchanged. 

 The other type of particle is called a Boson.  This is a particle with integral spin.  

Examples of bosons include deuterium nuclei or nitrogen-14 nuclei (both with I = 1) or helium-4 

nuclei (I = 0.)  A system containing two equivalent bosons must have a wavefunction that does 

not change sign for the exchange of two equivalent bosons. 

 

(1,2) = -(2,1) (for fermions) 

(1,2) = (2,1) (for bosons) 

 

In order to explore the properties of these types of particles, it is useful to define an operator that 

exchanges two equivalent particles (1 and 2). 
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In the limit that spin and orbital wavefunctions are separable (the total wavefunction can be 

expressed as the product of a spin function and an orbital function) 

 

spinorbitaltot =  

 

both the spin and orbital functions must be eigenfunctions of the electron exchange operator.  We 

shall explore the properties of this operation on spin wavefunction to explore the difference 

between single and triplet spin wavefunctions as derived from a pp pr p2 configuration. 

Consider how the microstates shown in Table 1 behave under the exchange operation. 
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Wavefunctions 1 and 4 are eigenfunctions of Ô .  Wavefunctions 2 and 3 are not 

eigenfunctions of Ô , but they are clearly related to one another through the electron exchange 

operation as the operation converts one into the other.  The relationship suggests that linear 

combinations of 2 and 3 can be taken in order to construct spin wavefunctions that are 

eigenfunctions of Ô .  One linear combination is symmetric (eigenvalue = +1) and the other is be 

antisymmetric (eigenvalue = -1).  The correct, normalized linear combinations are as follows. 
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Under the electron exchange operator, these linear combinations behave as follows. 
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So s is symmetric with respect to electron interchange and a is antisymmetric with respect to 

electron interchange.  Noting that 1 and 4 are natural symmetric eigenfunctions of the 

exchange operator, it is easy to group the spin wavefunctions into triplet and singlet components 

according to symmetry with respect to the operator Ô .  The summary of these results is shown in 

the table below. 

 

  Wavefunction S MS 

Triplet Symmetric 

1 )2()1(   

1 

+1 

s 
( ))2()1()2()1(

2

1
 +  0 

4 )2()1(   -1 

Singlet Antisymmetric a 
( ))2()1()2()1(

2

1
 −  0 0 

 

 It can be seen that there are three components of the triplet spin wavefunction and only 

one component to the singlet function, as implied by the names “triplet” and “singlet.”  More 

importantly, it is clear that to generate the ground state wavefunction for the atom, one must 

include contributions from paired electron spin functions (s).  So the statement of Hund’s rule 

that maximizing the number of electrons with the same value of ms attains the lowest energy 

state is clearly incorrect, as it excludes the necessary component with MS = 0. 

 For equivalent electrons (electrons in the same subshell, or the p2 case) the symmetric 

spin wavefunction set (the triplet functions) must take antisymmetric orbital function (P).  The 

singlet spin function, which is antisymmetric to electron exchange, must take a symmetric orbital 

function (D or S.)  As such, the three term symbols generated are 1D, 3P and 1S.  If the electrons 

are not equivalent, as is the case in a pp configuration, all combinations of the triplet and singlet 

spin functions with D, P and S orbital functions are possible and the resulting terms are 3D, 3P, 
3S, 1D, 1P and 1S. 

 The 3D, 1P and 3S functions are not possible in the p2 case, as these would require 

microstates that are either duplicates of other microstates, or microstates that involve two 

electrons in the same orbital with the same value of ms.  The latter is a clear violation of the Pauli 

Exclusion Principle since both electrons would then have the same values of n, l, ml and ms. 

 

Atomic Spectroscopy 
 

The complex spectra of atoms can be understood using term symbols, as they contain all 

of the symmetry and quantum number values needed.  The selection rules for systems that are 

well described by Russell-Saunders coupling are 
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S = 0  

L = 0, ±1 (but not 0  0) 

J = 0, ±1 (but not 0  0) 

 

Consider a 2P → 2S transition.  An energy level diagram for such a transition is shown to the 

right. 

 The selection rules predict two lines will be observed in the spectrum.  The splitting 

between the lines will be related to the spin-orbit coupling constant in the upper state.  Note that 

for this transition, S = and L = +1.  (In spectroscopy recall that changes are always calculated 

as the upper state value minus the lower state value as in L = L’ – L”.)  The two lines predicted 

have J = 0 and +1 as depicted in the diagram. 

 Things get more complex for larger values of L and S.  For example, consider the 

transition between a 3D state and a 3P state (with the 3D state as the upper state and both states 

increasing in energy with increasing J.) 

 
For this transition, six lines are predicted.  The pattern formed by the lines can vary based on the 

relative values of the spin-orbit coupling constants in each level.  In general, the upper state will 
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have the lower spin-orbit coupling constant, as electronic excitation quenches spin-orbit 

coupling. 

 

Landé Interval Rule 
 

The Landé Interval Rule describes the magnitude of the splittings in a term manifold.  

For example, it is predicted that the splitting pattern in a 3P state is  

 

 
The splitting between the 3P2 level and the 3P1 level is twice as large as that between the 3P1 

component and the 3P0 component.  In general, the Landé Interval Rule can be stated 

 

EJ+1 – EJ = hcA(J+1) 

 

where A is the spin-orbit splitting constant for the level.  The Landé Interval Rule works well 

for small splittings, where the spin-orbit interaction can be treated as a perturbation to the 

Hamiltonian.  There will generally be small deviations from the interval rule, especially when 

relativistic effects become important.  The Landé Interval can be used to interpret the complex 

splitting patterns that can be seen in some atomic spectra. 

 

The Deslandres Table. 
 

A very useful tool that can be used in spectroscopy is the Deslandres table.  In such a table, 

transitions are arranged according to upper and lower state combinations in such a way as to 

accentuate the differences in energy between quantum levels.  For example, consider the 

following energy level diagram for 3D – 3P transition, where the six transitions have been labeled 

a-f for convenience. 
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Looking at the diagram, it should be clear that the difference in energy between lines b 

and c  must be identical to that between lines d and e, since both differences give the difference 

in energy between the J = 2 and J = 1 components of the 3P level.  Similarly, the difference in 

energy between lines b and d must be equal to that between lines c and e, as that is the difference 

in energy between the J = 2 and J = 1 levels in the 3D state. 

 A Deslandres table summarizes the information in the energy level diagram and also 

incorporates the values of the measured lines in the spectrum.  Symbolically, the Deslandres 

table for the above transition would look as follows 

 

 
3D 

3 3A’ 2 2A’ 1 

3P 

2 a a-b b b-d d 

2A”   c-b  e-d 

1 --  c c-e e 

A”     f-e 

0 --  --  f 

 

The table contains not only the line frequencies, but also the differences between them.  It is the 

constancy of differences that confirms the assignment of the spectrum. 

 

Example:  consider the following data for a 3D – 3P transition.  Assign the lines and calculate the 

spin-orbit coupling constants for both the upper and lower states based on your assignments. 

 

Line Freq (cm-1) 

1 18492.74 

2 18511.98 

3 18525.82 

4 18540.84 
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5 18542.36 

6 18545.06 

 

The stick spectrum (simulated spectrum, with transitions indicated as sticks instead of lines with 

a definite line shape and without intensity data indicated) looks as follows. 

 

 
 

It would be difficult to assign the spectrum simply based on the pattern seen above.  In some 

cases, the spectral pattern can be quite complex!  A couple of things can be inferred, however, 

based on the energy level diagram above. 

 

1. The smallest energy transition is for 3D1 – 3P2 and 

2. the largest energy transition is either 3D1 – 3P0 or 3D2 – 3P1 (depending on the 

relative magnitudes of the spin-orbit splittings.) 

 

Based on these observations, we can assign the 18492.74 line.   

If 18545.06 cm-1 is the 3D1 – 3P0 transition, then the difference should be 3A”.  This 

predicts a lower level spin-orbit-coupling constant of A” = 17.44 cm-1.  And there must be a line 

at 18527.62 cm-1.  But there is no such line!  Hence, the highest energy transition is not the 3D1 – 
3P0 transition.  It must be the 3D2-

3P1 transition instead! 

If the 18542.36 cm-1 line is the 3D1 – 3P0 transition, a value of A” = 16.54 cm-1 is 

predicted.  This predicts a line at 18525.82 cm-1 which does exist!  (This is idealized theoretical 

data for demonstration purposes.  The Landé interval rule does not always hold as strongly as 

that.) 

The difference between the 3D2 – 3P1 transition and the 3D1 – 3P1 transition is 19.24 cm-1.  

In order to maintain a constant set of differences, there must be a line at 18511.98 cm-1, which 

there is.  This is assigned as the 3D2 – 2P2 transition. 

The only remaining line is 18540.84 cm-1, which is assigned as the 3D3 – 3P2 transition.  

3
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The final Deslandres table looks as follows. 

 

 
3D 

3 3A’ 2 2A’ 1 

3P 

2 18540.84 28.86 18511.98 19.24 18492.74 

2A”   33.08  33.08 

1 --  18545.06 19.24 18525.82 

A”     16.54 

0 --  --  18542.36 

 
 

 

 

 In conclusion, angular momentum coupling schemes can be used to describe the states in 

a polyelectronic atom.  These states can be used to predict the spectroscopy of these systems.  In 

the next chapter, we will apply a number of the principles developed in this chapter in order to 

understand the electronic structure of diatomic molecules.  This has important ramifications on 

both spectroscopy and bonding in these molecules, and also forms a foundation for how we think 

about electronic structure in larger molecules. 
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Learning Objectives 
 

After mastering the material covered in this chapter, one will be able to: 

 

1. Describe the Orbital Approximation and explain how it leads to differences for 

polyelectronic atoms relative to the Hydrogen atom results. 

2. Utilize the Aufbau principle to determine the ground electronic state electronic 

configuration for a polyelectronic atom, taking into account any important consequences 

of 
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a. the Pauli Exclusion Principle 

b. Hund’s Rules of Maximum Multiplicty 

3. Construct an orbital diagram depicting an electronic configuration, including using such a 

diagram to predict important properties of the ground (or any) electronic state 

configuration of an atom. These properties may include 

a. Paramagnetism or diamagnetism 

b. Total spin multiplicity or the number of total spin multiplicities associated with a 

given electronic configuration. 

4. Use Russell-Saunders angular momentum coupling to determine the term symbols that 

arise for a given electronic configuration. Especially, one should be able to predict the 

lowest-energy term-state that arises from an electronic configuration consistent with 

Hund’s Rules. 

5. Employ electron exchange symmetry rules to construct symmetry-adapted linear 

combinations of spin functions that can be used to satisfy the Pauli Exclusion Principle 

by creating total wavefunctions that are antisymmetric with respect to the exchange of 

equivalent electrons. 

6. Construct energy-level diagrams for term states that are consistent with Russell-Saunders 

coupling and the Lande Interval Rule.  

a. Use these diagrams to predict the structure of electronic transition spectra 

involving these states. 

b. Organize the data into a Deslandres Table to aid in the conformation of 

assignments and the calculation of spin-orbit coupling constants. 

Problems 
 

1. Write a table of microstates and predict the term simple that arise for N with an electronic 

configuration of [He] 2s2 2p3. Which is predicted to be the ground electronic state? 

2. On the planet Zorg, electrons can exist in  orbitals, with l = 3/2 (and so ml = + 3/2, +1/2, 

-1/2, -3/2). All other rules apply (2 electrons per orbital, Hund’s Rules, etc.)  

a. How many microstates arise from a 2 configuration? 

b. Write a table of microstates for the 2 configuration. What term symbols arise 

from this set of microstates? 

3. Using the accepted conventions, draw an orbital diagram for the d electrons in V.  

a. What is the predicted ground state term? 

b. How many additional microstates contribute to the term? 

4. Consider a 3P – 3P transition (in which both states increase in energy with increasing J.) 

a. Draw an energy level diagram for the transition and predict the component 

transitions. 

b. consider the following values: A” = 12.3 cm-1, A’ = 8.4 cm-1 and the 3P1
 – 3P0 

transition occurs at 12459.3 cm-1. Based on these complete a Deslandres table 

describing all of the component transitions and the spin-orbit spacings in the 3P-3P 

transition. 
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