Chapter 8: Polyelectronic Atoms

One of the shortcomings of Bohr’s model of the hydrogen atom was that it was not
extensible to atoms that had more than one electron. The newly emerging quantum mechanics
was hoped to do a better job. Unfortunately, while the hydrogen atom problem is solvable
analytically, issues arise when an attempt is made to solve the problem for atoms with multiple
electrons. Regardless, the first step in deriving this theory, then, is writing the Hamiltonian for
the System.

Potential Energy and the Hamiltonian

The potential energy of a poly electronic atom is all electrostatic in nature. There are
attractive forces between electrons and the nucleus and repulsive forces between the electrons
themselves. For simplicity, we will consider the helium atom first, which has a nucleus with a
charge of +2 electron charges and two electrons with -1 charges each.
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The Hamiltonian for this system will have kinetic energy terms for both electrons and
three terms to describe the potential energy in the system. The attractive forces will lead to
negative contributions to the potential energy and the repulsive (electron-electron) force will
contribute a positive value to the potential energy. In atomic units, this yields

A=f+f-2- 2L
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The -1/r12 (electron-electron repulsion term) makes the problem unseparable into terms that
relate only to a single electron. This creates a three body problem, which cannot be solved
analytically.

The Orbital Approximation

The way we deal with this problem is to simply ignore the electron-electron repulsion
term in the solution, and treat it phenomenologically after the fact. This is known as the orbital
approximation, as it allows for the separation of the Hamiltonian into two terms, one of which
deals in electron 1 and the other in electron 2.

Quantum Chemistry with Applications in Molecular Spectroscopy: Polyelectronic Atoms © 2022 Patrick E.
Fleming - Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-
NC-SA 4.0)


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

A+ 1

This is also the approximation that allows us to write electronic configurations for
polyelectronic atoms. In the electronic configuration, we assume that each electron has a
hydrogen-like wavefunction.

The Aufbau principle

The aufbau principle (German for “building up” principle), or building up principle,
suggests that we can construct a description of an atom my adding subatomic particles one at a
time, moving through the periodic table until we reach the element of interest.

Under this description, a carbon atom (atomic number 6) is similar to a boron (atomic
number 5) atom, but with one additional proton and some additional neutrons in the nucleus and
one additional electron added to the electron cloud.

Electronic Configurations

Consider carbon, which is atomic number 6. Most chemists advanced to a level to which
they are prepared to take a course in physical chemistry can construct an electronic configuration
for ¢C.

¢C: [He] 25> 2p?
Or for 23V, one would write
23 V: [Ar] 4s* 3d?

It is a curious thing that that the 4s subshell fills before the 3d subshell, since in atomic
hydrogen, the 3d subshell has a lower energy. However, in polyelectronic atoms, (specifically
for K and Ca) the 4s subshell is actually lower in energy than the 3d subshell. As such,
according to the aufbau principle, it is the 4s subshell that fills first of the two.

However, it is important to note that the relative energies of the subshells change with
changing nuclear charge and differing numbers of electrons. For example, in Sc, it is the 4s
electrons that are higher in energy than the 3d electron. As such, the 4s electrons are the first to
be removed when the atom is ionized.

Shells, Subshells, Orbitals and Spin
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It is useful to develop some nomenclature to describe the different combinations of quantum
numbers that describe the different wavefunctions for the electrons in an atom. In order to do
this, we need ot define a few terms that will come in handy later.

i. shell — characterized by the principle quantum number n

ii. subshell — characterized by n and the angular momentum quantum number /

iii. orbital — characterized by n, / and the azimuthal quantum number m;.

In addition to shells, subshells and orbitals, electrons have spin. The spin quantum
number of an electron is s = 2. But generally electrons are described as being “spin up” or “spin
down” based on the value of the z-axis component of the spin, ms. ms can take values of + and
-%. Each orbital can hold two electrons. If there are two electrons in the orbital, the spins must
be pairs such that one is “spin up” and the other is “spin down.”

Orbital Diagrams

Orbital diagrams are handy to depict electronic configurations without having to resort to
just quantum numbers. In an orbital diagram, each orbital is depicted using a box or a line and
electrons are depicted with arrows pointing either up or down depending on the value of ms.

Angular Momentum Coupling

Any system that has more than one source of angular momentum will be subject to coupling
between those forms of angular momentum. For example, consider the emission from an excited
hydrogen atom, for which the electron is in the 2p subshell the atom emits a photon as the
electron relaxes to be in the ground 1s subshell. In fact, this transition is doubled as two lines
can be observed if viewed at high enough resolution.
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The transition is depicted in the above energy level diagram. The upper (2p) state is
shown to be split into two components, one labeled *P3/» and one *P1. The lower state has only
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one component, labeled 2S1/. Part of the job of quantum mechanics will be to describe this
splitting. The explanation comes in the form of angular momentum coupling.

There are two sources of angular momentum in the electronic wavefunction of the
atom: the orbital angular momentum (/ = 1) and the electron spin angular momentum (s = '%.)
These angular momenta can couple to yield a total angular momentum J = ¥ or %2. The

resultant angular momentum can be determined by the two angular momentum vectors adding in
parallel of antiparallel. The result is to split the state into two components.

Term Symbols

Angular momentum in atoms can be summarized using a term symbol. The term
symbol will indicate a number of different types of angular momentum such as the total orbital
angular momentum, total spin angular momentum and the total (spin + orbit) angular
momentum. In the limit that Russell-Saunders coupling (which will be described in detail
shortly) provides a a good description of the atom, the term symbol used will be of the form

(ZSH)LJ

Where S is the total spin angular momentum and (2S+1) is the spin degeneracy, L is the total
orbital angular momentum, and J gives the total of the spin-orbit angular momentum. (The
convention will be followed that lower-case letters are used to indicate one-electron properties
and upper-case letters are used to describe total atom properties.)

L and S must be calculated using vectoral sums of the single-electron angular momenta
(whether orbital or spin.) The vectoral sums can yield several values depending on the angle
between the vectors. The possible magnitudes of the resultant vectors will be quantized, with the
range of magnitudes being given by a Clebsch series. Consider the addition of the angular
momentum vectors for two electrons in p (/ = 1) subshells.

L=hL® L
=h~+h,h+h-1,1+h-2,...,|L-Dh]

1>

Iy

As such, the possible values of L for a p> configuration are

L=lLH®b=1® 1
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=2,1,0

As in the case of one-electron orbital angular momenta, the total orbital angular momentum is
signified using a letter. The following table shows which letters are used.

Total Atom \
‘ Designation

One-electron |

‘ Designation ‘

L
0
1
2
3
4

AW~ O KBS
e | (O

Qg |wn

The possible values of S, are given by s1 @ s>. (For all electrons, s = '2.)

S=51 D =% D %
=1,0

So the possible values of (2S + 1) are 3 and 1. In other words, both triplet and singlet states arise
from a p? configuration.

However, not all possible combinations of L. and (2S+1) are possible. In fact, only those
values that arise from distinguishable combinations of miscrostate quantum number
combinations are possible.

The Microstate Method
The number of distinguishable microstates for a given electronic configuration is given by

G!
NI(G - N)!

where G is the number of spin-orbit states possible for a single electron and N is the number of
electrons. For a p? configuration, G = 6 and N = 2. So the number of microstates is given by

6! 6-5-4-3-2-1

2141 (2-1)-(4-3-2:1)

So there are 15 possible microstates possible. Each microstate will be characterized by a value
of m; and m; for each electron under consideration. A complete set of microstates for a p?
configuration is shown in the table below. m; and ms are indicated for electrons 1 and 2 in the
atom. Notice that only distinguishable combinations are shown!
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Designation

1 +1 +1 +Y% Y5 +2 0 D

2 +1 0 +Y% +Y% +1 +1 ’p
3 +1 0 +1% Y5 +1 0 D

4 +1 -1 +Y% +Y% 0 +1 ’p
5 +1 -1 +1% Y5 0 0 D

6 +1 0 Y +1% +1 0 ’p
7 +1 0 - - +1 -1 3p
8 +1 -1 Y +1% 0 0 ’p
9 +1 -1 - - 0 -1 3p
10 0 0 +% - 0 0 IS
11 0 -1 +% +% -1 +1 3p
12 0 -1 + ) -1 0 D

13 0 -1 - +% -1 0 ’p
14 0 -1 - - -1 -1 3p
15 -1 -1 +% - -2 0 'D

The “Designation” column in the above table is really for bookkeeping only. For
example, it should be noted that there are two miscrostates that yield ML = +1, Ms = 0. One has
been designated 'D and the other *P. In fact, the wavefunctions needed to describe these term
symbol components require linear combinations of both microstates.

The resulting microstates for a p> configuration are 'D, °P and 'S. The methodology for
determining this from the table of microstates is as follows:

Find the largest value of My and the largest value of Mg that corresponds to that value.
From these, find L and S for the term symbol.

Mark combinations of Mt and Ms that match the pattern for a given term symbol.
Repeat from step 1 for remaining microstates. Keep repeating until there are no
microstates left.

b S

It is very important to approach this process methodically or errors will occur in
determining microstate-term symbol correlations.

Utilizing this methodology to work through the above table, we start with the largest
value for ML which is +2. The largest value of Ms that goes with it is 0. This indicates L and S
values of 2 and 1 respectively. L =2 indicates a D state. S =0 indicates that (2S+1)=1 (ora
singlet state.) So the resulting term is 'D. This will have components of M = +2, +1, 0, -1, -2.
Each will have Ms = 0. This accounts for five of the microstates.

The largest value of ML for the remaining microstates is ML = +1. the largest value of Ms
that goes with ML = +1 is Ms = +1. This correlates to L = 1, S =1 or a °P state. There are nine
combinations of microstates for this term symbol, one each for each combination of My = +1, 0,
-1 and Ms=+1, 0, -1.
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After these combinations are marked, the only remaining combination is M = 0, Ms = 0,
which corresponds to a 'S state.

The number of microstates used for a given term symbol can be determined from (2L+1)
and (2S+1), the orbital and spin degeneracies respectively. Consider the following table. Notice
that the total of (2L+1)(2S+1) is the same as the number of original microstates.

(2L+1) (2S+1) (QL+1)(2S+1)

'D 5 1 5

’p 3 3 9

'S 1 1 1
Total 15

Spin-Orbit Coupling

The one thing that has not been determined from the microstates themselves is the total
angular momentum J, which is given by the vectoral sum of L and S. J values must be
determined for each term separately. This coupling of spin and orbit angular momenta will split
the term states further.

J=L &S
'D 2 0 2 D,
’p 1 1 2,1,0 3P,, °P1, *Po
'S 0 0 0 'So

Again, the values of the spin-orbit degeneracies, given by (2J+1) can be used to determine if the
coupling scheme has been done properly.

I QI+

'D, 2 5
3P, 2 5
Py 1 3
3Py 0 1
ISy 0 1

Total 15

Again, notice that the total matches the original number of microstates.

The Hole Rule
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When dealing with a subshell that is more than half filled, it is oftentimes easier (or at
least less tedious) to employ the hole rule. The hole rule involves treating electron holes rather
than the electrons themselves. Consider sC and 3O as an example of complementary atoms.
Carbon has a p? configuration and oxygen a p* configuration. (Added together, that makes a p®
configuration, which closes the p-subshell and is why the two atoms are complementary.)

For each microstate in the p system, there exists one in the p* system that when added
together would complete the p-subshell. An example is shown below.

| | 11

0

This relationship ensures that the exact same symmetry relationships hold for the p* system as
for the p? system. Hence, the term symbols that arise from a p* system are 'D, °P and 'S. With
spin-orbit coupling, the 3P will split into three components, *Po, °P; and *P,. Of these, P2 will
have the lowest energy according to Hund’s rule 3b, as these terms arise from a system where the
subshell is more than half filled.

Hund’s Rules

Hund’s rules are used to determine the lowest energy state within the manifold of states
generated from a given electronic configuration. The rules can be summarized as follows:

Hund’s Rules
1. The lowest energy state will be the one with the largest value of S.
2. For multiple states with the same largest value of S, the lowest energy state will have the
largest value of L.
3. For states with the same values of L and S, the lowest energy state will have
a. The smallest value of J, if the term arises from an electronic configuration in
which the subshell is less than half filled
b. The largest value of J, if the term arises from an electronic configuration in which
the subshell is more than half filled

For the case of a p? configuration, the largest value of S generated is S = 1, for the °P state. And
within this state, the lowest energy term will be *Po, since p* corresponds to a subshell that is less
than half filled.

Example: Determine the term symbols that arise from the p* configuration of 7N.
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Nonequivalent Electrons

Consider a carbon atom in an excited state where the electronic configuration is given by

¢C: [He] 2s* 2p' 3p!

This is an example of a pp configuration (which is different than a p? configuration since the two

electrons have different values of the principle quantum number n. In this case, a number of
microstate combinations become distinguishable that would not be before. A complete set of

microstates for a pp configuration is given in the table below. In this case, since the electrons are
not equivalent, it is possible for both to be in orbitals where m; = +1 with ms = +)% since they are

in different subshells.

Designation
1 +1 +1 +% +% +2 +1 D
2 +1 +1 +% -V +2 0 D
3 +1 +1 - +% +2 0 D
4 +1 +1 - - +2 -1 D
5 +1 0 +V% +V% +1 +1 ‘D
6 +1 0 +% - +1 0 D
7 +1 0 - +% +1 0 D
8 +1 0 - - +1 -1 D
9 +1 -1 +% +% 0 +1 D
10 +1 -1 +% - 0 0 D
11 +1 -1 - +% 0 0 D
12 +1 -1 Y s 0 -1 D
13 0 +1 +% +% +1 +1 ’p
14 0 +1 +% - +1 0 3p
15 0 +1 Y +% +1 0 'p
16 0 +1 - - +1 -1 3p
17 0 0 +1 +1 0 +1 ’S
18 0 0 +%5 - 0 0 3S
19 0 0 - +% 0 0 'S
20 0 0 - - 0 -1 3S
21 0 -1 +Y% +Y% -1 +1 D
22 0 -1 +Y s -1 0 D
23 0 -1 - +% -1 0 D
24 0 -1 s s -1 -1 D
25 -1 +1 +% +% 0 +1 3p
26 -1 +1 + - 0 0 ’p
27 -1 +1 - +1 0 0 'p
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28 -1 +1 -2 - 0 -1 3P
29 -1 0 + + -1 +1 3P
30 -1 0 + - -1 0 3p
31 -1 0 - + -1 0 'P
32 -1 0 - - -1 -1 3p
33 -1 -1 + + -2 +1 ‘D

34 -1 -1 + - -2 0 ‘D

35 -1 -1 - + -2 0 'D

36 -1 -1 -2 -2 -2 -1 D

In this example, there are more term symbols generated due to the fact that the electrons
are not in the same subshell. The resulting term symbols are °D, *P, 3S, 'P, 'P and 'S. As such,
this set of microstates includes some combinations of m; and ms which would not be possible if
the two electrons were in the same subshell.

The Pauli Exclusion Principle

One explanation as to why the differences between the term symbols that arise from a p?
configuration relative to a pp configuration is the Pauli Exclusion principle. The usual
statement of the Pauli Exclusion Principle is that no two electrons in an atom can have the same
set of four quantum numbers n, /, m and ms. Another explanation is to simply announce that

Electrons are Fermions!

This approach is useful if you happen to know the properties of Fermions, but does not provide
much insight if you do not.

A Fermion is a particle with half-integral spin. An obvious example (according to the
statement above) is an electron which has s = '4. Other examples include protons and neutrons
and fluorine-19 nuclei (all with I ='%), aluminum-27 nuclei (I = 5/2) etc. Fermions have the
property that the total wavefunction of a system containing two equivalent fermions must change
sign if the two particles are exchanged.

The other type of particle is called a Boson. This is a particle with integral spin.
Examples of bosons include deuterium nuclei or nitrogen-14 nuclei (both with I = 1)) or helium-4
nuclei (I=0.) A system containing two equivalent bosons must have a wavefunction that does
not change sign for the exchange of two equivalent bosons.

Y(1,2)=-¥Y(2,1) (for fermions)
Y(1,2)=Y(2,1) (for bosons)

In order to explore the properties of these types of particles, it is useful to define an operator that
exchanges two equivalent particles (1 and 2).
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0¥ (1,2) = ¥(2,1)
Oy, Oy, (2) =, 2y, (1)

In the limit that spin and orbital wavefunctions are separable (the total wavefunction can be
expressed as the product of a spin function and an orbital function)

\Pt()t = l//()rhital W‘\pin

both the spin and orbital functions must be eigenfunctions of the electron exchange operator. We
shall explore the properties of this operation on spin wavefunction to explore the difference
between single and triplet spin wavefunctions as derived from a pp pr p? configuration.

Consider how the microstates shown in Table 1 behave under the exchange operation.

0¥, = Oa()a(2) = a(R)a(l) = ¥,
0¥, = 0a(DB2) = a()B() = ¥,
0¥, = 0p(a(2) = B)a(l) = ¥,
O¥, = 0B(HA2) = BB =Y,

Wavefunctions W1 and W4 are eigenfunctions of O. Wavefunctions ¥, and W are not

eigenfunctions of O, but they are clearly related to one another through the electron exchange
operation as the operation converts one into the other. The relationship suggests that linear
combinations of > and W3 can be taken in order to construct spin wavefunctions that are

eigenfunctions of O. One linear combination is symmetric (eigenvalue = +1) and the other is be
antisymmetric (eigenvalue = -1). The correct, normalized linear combinations are as follows.

¥, =— (¥, +¥,)= (a(l)ﬂ(2)+ﬁ(l)a(2))

%\

¥ =

a

smw

(W, -¥,)= E(a(l)ﬂ@) - f(Ha(2))

Under the electron exchange operator, these linear combinations behave as follows.

(@(2)pM) + p2)a(l)="?,

%\

oV, 0{ \/_(a(l)ﬂ(2)+ ﬁ(l)a(2))}

o, 0{ f(aa)ﬂ(z) ﬂ(l)a(Z))} (@(2)p1) - BQ)a(l) = -

%\
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So ¥ is symmetric with respect to electron interchange and W, is antisymmetric with respect to
electron interchange. Noting that W1 and W4 are natural symmetric eigenfunctions of the
exchange operator, it is easy to group the spin wavefunctions into triplet and singlet components
according to symmetry with respect to the operator O. The summary of these results is shown in
the table below.

Wavefunction S Ms

¥ a(Da(2) +1
Triplet Symmetric v, Lz (a(l) B2)+ ﬂ(l)a(Z)) 1 0
bR ADAQ2) -1
Singlet | Antisymmetric | ¥, % (@(BQ2) - BDa(2)) 0 0

It can be seen that there are three components of the triplet spin wavefunction and only
one component to the singlet function, as implied by the names “triplet” and “singlet.” More
importantly, it is clear that to generate the ground state wavefunction for the atom, one must
include contributions from paired electron spin functions (‘¥s). So the statement of Hund’s rule
that maximizing the number of electrons with the same value of m; attains the lowest energy
state is clearly incorrect, as it excludes the necessary component with Ms = 0.

For equivalent electrons (electrons in the same subshell, or the p? case) the symmetric
spin wavefunction set (the triplet functions) must take antisymmetric orbital function (P). The
singlet spin function, which is antisymmetric to electron exchange, must take a symmetric orbital
function (D or S.) As such, the three term symbols generated are 'D, *P and !S. If the electrons
are not equivalent, as is the case in a pp configuration, all combinations of the triplet and singlet
spin functions with D, P and S orbital functions are possible and the resulting terms are *D, °P,
3S, 'D, 'P and 'S.

The 3D, !P and 3S functions are not possible in the p? case, as these would require
microstates that are either duplicates of other microstates, or microstates that involve two
electrons in the same orbital with the same value of ms. The latter is a clear violation of the Pauli
Exclusion Principle since both electrons would then have the same values of n, /, m; and ms.

Atomic Spectroscopy

The complex spectra of atoms can be understood using term symbols, as they contain all
of the symmetry and quantum number values needed. The selection rules for systems that are
well described by Russell-Saunders coupling are
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32

2p P
Pis2

2
1s 5 1/2

AS=0
AL =0, =1 (but not 0 <> 0)
AJ =0, £1 (but not 0 <> 0)

Consider a P = S transition. An energy level diagram for such a transition is shown to the
right.

The selection rules predict two lines will be observed in the spectrum. The splitting
between the lines will be related to the spin-orbit coupling constant in the upper state. Note that
for this transition, AS = and AL = +1. (In spectroscopy recall that changes are always calculated
as the upper state value minus the lower state value as in AL =L’ — L”.) The two lines predicted
have AJ =0 and +1 as depicted in the diagram.

Things get more complex for larger values of L and S. For example, consider the
transition between a °D state and a P state (with the *D state as the upper state and both states
increasing in energy with increasing J.)

3
3p 2
1
2
3p 1
0

For this transition, six lines are predicted. The pattern formed by the lines can vary based on the
relative values of the spin-orbit coupling constants in each level. In general, the upper state will
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have the lower spin-orbit coupling constant, as electronic excitation quenches spin-orbit
coupling.

Landé Interval Rule

The Landé Interval Rule describes the magnitude of the splittings in a term manifold.
For example, it is predicted that the splitting pattern in a 3P state is

3P
2
3p
3
3P1
Fo
The splitting between the *P level and the *P; level is twice as large as that between the *P;
component and the *Po component. In general, the Landé Interval Rule can be stated

E1 — By = heA(J+1)

where A is the spin-orbit splitting constant for the level. The Landé¢ Interval Rule works well
for small splittings, where the spin-orbit interaction can be treated as a perturbation to the
Hamiltonian. There will generally be small deviations from the interval rule, especially when
relativistic effects become important. The Land¢ Interval can be used to interpret the complex
splitting patterns that can be seen in some atomic spectra.

The Deslandres Table.

A very useful tool that can be used in spectroscopy is the Deslandres table. In such a table,
transitions are arranged according to upper and lower state combinations in such a way as to
accentuate the differences in energy between quantum levels. For example, consider the
following energy level diagram for *D — P transition, where the six transitions have been labeled
a-f for convenience.
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3p 2
1
2
3p 1
0

a b c de f

Looking at the diagram, it should be clear that the difference in energy between lines b
and ¢ must be identical to that between lines d and e, since both differences give the difference
in energy between the J =2 and J = 1 components of the *P level. Similarly, the difference in
energy between lines b and d must be equal to that between lines ¢ and e, as that is the difference
in energy between the J =2 and J = 1 levels in the °D state.

A Deslandres table summarizes the information in the energy level diagram and also
incorporates the values of the measured lines in the spectrum. Symbolically, the Deslandres
table for the above transition would look as follows

The table contains not only the line frequencies, but also the differences between them. It is the
constancy of differences that confirms the assignment of the spectrum.

Example: consider the following data for a D — P transition. Assign the lines and calculate the
spin-orbit coupling constants for both the upper and lower states based on your assignments.

Line Freq (cm™)

1 18492.74
2 18511.98
3 18525.82
4 18540.84
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5 18542.36
6 18545.06

The stick spectrum (simulated spectrum, with transitions indicated as sticks instead of lines with
a definite line shape and without intensity data indicated) looks as follows.

120

100 4 ¢ ’ * *9 9
80 A
60 -
40 -
20 A

0 T T T T T
18490 18500 18510 18520 18530 18540 18550

wavenumber (cm'1)

It would be difficult to assign the spectrum simply based on the pattern seen above. In some
cases, the spectral pattern can be quite complex! A couple of things can be inferred, however,
based on the energy level diagram above.

1. The smallest energy transition is for *D; — *P, and
2. the largest energy transition is either *D; — 3Py or °D> — °P; (depending on the
relative magnitudes of the spin-orbit splittings.)

Based on these observations, we can assign the 18492.74 line.

If 18545.06 cm! is the *D; — Py transition, then the difference should be 3A”. This
predicts a lower level spin-orbit-coupling constant of A” = 17.44 cm™!. And there must be a line
at 18527.62 cm™!. But there is no such line! Hence, the highest energy transition is not the *D; —
3P transition. It must be the *D»-*P; transition instead!

If the 18542.36 cm™ line is the D — Py transition, a value of A” = 16.54 cm™ is
predicted. This predicts a line at 18525.82 cm™ which does exist! (This is idealized theoretical
data for demonstration purposes. The Land¢ interval rule does not always hold as strongly as
that.)

The difference between the D, — °P; transition and the *D; — 3P transition is 19.24 cm™.
In order to maintain a constant set of differences, there must be a line at 18511.98 cm™!, which
there is. This is assigned as the *D> — 2P transition.

The only remaining line is 18540.84 cm’!, which is assigned as the D3 — *P, transition.
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The final Deslandres table looks as follows.

18511.98 18492.74
33.08 33.08

- 18545.06 19.24 18525.82
16.54

-- -- 18542.36

In conclusion, angular momentum coupling schemes can be used to describe the states in
a polyelectronic atom. These states can be used to predict the spectroscopy of these systems. In
the next chapter, we will apply a number of the principles developed in this chapter in order to
understand the electronic structure of diatomic molecules. This has important ramifications on
both spectroscopy and bonding in these molecules, and also forms a foundation for how we think
about electronic structure in larger molecules.

Vocabulary and Concepts
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Clebsch series........cocevvvereenenieneeniennne. 176 Pauli Exclusion principle..........c.cceueeee. 182
Deslandres table..........cccoeevveerieeennennne. 186 Russell-Saunders coupling.............. 176, 184
Fermion.......ccoceviiiiiiniiiieeieeeeee, 182 Shell...ooiii 175
hole rule ......oooviieeiiieiee e, 179 spin-orbit splitting constant..................... 185
Hund’s rules........cccooeeviiininiiieeee, 180 subshell .......oocoeiiiiiiiiiee, 175
Landé¢ Interval Rule.........ccceeveveennnnnnne. 185 term Ssymbol .....ccooevviieiiiieeee e 176

Learning Objectives
After mastering the material covered in this chapter, one will be able to:

1. Describe the Orbital Approximation and explain how it leads to differences for
polyelectronic atoms relative to the Hydrogen atom results.
2. Utilize the Aufbau principle to determine the ground electronic state electronic

configuration for a polyelectronic atom, taking into account any important consequences
of

Quantum Chemistry with Applications in Molecular Spectroscopy: Polyelectronic Atoms © 2022 Patrick E.
Fleming - Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-
NC-SA 4.0)

215



https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

a. the Pauli Exclusion Principle
b. Hund’s Rules of Maximum Multiplicty

3. Construct an orbital diagram depicting an electronic configuration, including using such a
diagram to predict important properties of the ground (or any) electronic state
configuration of an atom. These properties may include

a. Paramagnetism or diamagnetism
b. Total spin multiplicity or the number of total spin multiplicities associated with a
given electronic configuration.

4. Use Russell-Saunders angular momentum coupling to determine the term symbols that
arise for a given electronic configuration. Especially, one should be able to predict the
lowest-energy term-state that arises from an electronic configuration consistent with
Hund’s Rules.

5. Employ electron exchange symmetry rules to construct symmetry-adapted linear
combinations of spin functions that can be used to satisfy the Pauli Exclusion Principle
by creating total wavefunctions that are antisymmetric with respect to the exchange of
equivalent electrons.

6. Construct energy-level diagrams for term states that are consistent with Russell-Saunders
coupling and the Lande Interval Rule.

a. Use these diagrams to predict the structure of electronic transition spectra
involving these states.

b. Organize the data into a Deslandres Table to aid in the conformation of
assignments and the calculation of spin-orbit coupling constants.

Problems

1. Write a table of microstates and predict the term simple that arise for N with an electronic
configuration of [He] 2s> 2p°. Which is predicted to be the ground electronic state?

2. On the planet Zorg, electrons can exist in ¢ orbitals, with / = 3/2 (and so m; =+ 3/2, +1/2,
-1/2, -3/2). All other rules apply (2 electrons per orbital, Hund’s Rules, etc.)

a. How many microstates arise from a {? configuration?

b. Write a table of microstates for the {? configuration. What term symbols arise
from this set of microstates?

3. Using the accepted conventions, draw an orbital diagram for the d electrons in V.

a. What is the predicted ground state term?

b. How many additional microstates contribute to the term?

4. Consider a *P — 3P transition (in which both states increase in energy with increasing J.)

a. Draw an energy level diagram for the transition and predict the component
transitions.

b. consider the following values: A”=12.3 cm™, A’ = 8.4 cm™ and the *P; 3Py
transition occurs at 12459.3 cm™'. Based on these complete a Deslandres table
describing all of the component transitions and the spin-orbit spacings in the *P->P
transition.
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