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Chapter 9: Molecules 
 

Quantum mechanics can be used to predict a large number of properties, especially those 

related to electronic spectroscopy, for diatomic molecules.  A number of the concepts discussed 

in this chapter can be expanded to explain a great deal of the behavior of polyatomic molecules 

as well. 

 

Potential Energy and the Hamiltonian 
 

The first task of applying quantum mechanics to a problem is writing the Hamiltonian.  This 

requires deriving an expression for potential energy.  Consider as an example, the simplest 

diatomic molecule, H2
+. 

 
 

In the above diagram, the blue dots indicate protons and the red dot, an electron.  There will be 

attractive forces between the electron and protons 1 and 2 (separated by r1 and r2 respectively) 

and a repulsive force between the two protons, separate by a distance r12.  In atomic units, the 

Hamiltonian can be written 

 

1221

21

111ˆˆˆˆ
rrr

TTTH e +−−++=  

 

where T1, T2 and Te indicate the kinetic energies of protons 1 and 2 and the electron, 

respectively.  As was the case in the helium atom, the H2
+ molecule involves a three body 

problem which cannot be solved analytically.   As such, an approximation must be made in order 

to proceed. 

 

The Born-Oppenheimer Approximation 
 

The Born-Oppenheimer approximation (Born & Oppenheimer, 1927) is made in order 

to simplify the problem in the case of a molecule.  This approximation is based on the relative 

masses (and therefore the relative speeds) of the heavy nuclei compared to the light electron.  It 

says that if the nuclei move (such as due to molecular vibration) that the electron(s) will react to 
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a change in the potential energy field instantaneously.  As such, the internuclear distance (r12) 

can be fixed, and the wave function for the electron optimized.  If the nuclear coordinates are 

fixed, the Hamiltonian becomes 

 

1221

111ˆˆ
rrr

TH e +−−=  

and the value of 1/r12 becomes a constant. 

 There are many cases where the Born-Oppenheimer approximation breaks down, such as 

Renner-Teller interactions and Jahn-Teller interactions which involve strong coupling between 

vibrational motion of a molecule and the electronic state.  For the purposes of this text, we will 

stick to examples where the Born-Oppenheimer approximation is reasonable. 

 The Born-Oppenheimer approximation makes it possible to calculate a number of 

properties for molecules.  Below is an example of a potential energy surface of O2 calculated 

using molecular modeling software at the HF/6-31G(d) level of theory.  Basically, the program 

optimizes the wavefunctions describing the molecular orbitals based on a fixed internuclear 

separation.  After populating the resultant orbitals with electrons, a total molecular energy is 

generated.  After repeating this process at several different internuclear separation values, the 

curve can be constructed. 

 

 
 

Such calculations are based entirely on the electronic structure of the molecule.  As such, some 

insight into the nature of molecular orbitals and their wavefunctions is needed to proceed. 

 

O2 Potential Energy Surface
HF/6-31g(d)
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Molecular Orbital Theory 
 

 There are a number of ways to describe the electronic structure in diatomic molecules and 

the wavefunctions that are needed for the descriptions.  Molecular Orbital theory provides one 

such example.  There are many ways to describe molecular orbitals.  One of the most commonly 

used is the method of using linear combinations of atomic orbitals (lcao). 

 

Linear Combinations of Atomic Orbitals (LCAO) 
 

 Consider a wavefunctions derived from the Schrodinger equation that can be expressed as 

linear combinations of the 1s orbitals centered on each atom.  The wavefunction can then be 

written 

 

(r1,r2) = c1(1s1) + c2(1s2) 

 

In this expression, r1 and r2 are the coordinates (position vectors) for nuclei 1 and 2.  1s1 an 1s2 

refer to the 1s orbitals centered on nuclei 1 and 2 respectively.  Due to the symmetry of the 

molecule, the magnitudes of c1 and c2 must be the same. 

 

c1 = c2 = c 

 

In order to be normalized, the wave function must satisfy 
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The first and the third integrals in this expression are unity due to the fact that the 1s orbitals are 

themselves normalized.  This the expression becomes 
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The integral in this expression  dss 2111  does not vanish due to orthogonality as we have seen 

in other examples, since the wavefunctions are centered in different locations.  The magnitude of 

the integral, therefore, depends on the degree to which the two orbitals overlap one another.  The 

overlap integral is commonly given the symbol S.  The magnitude of the normalization constant 

for the molecular wavefunction will depend intimately on the magnitude of this overlap. 

 

( )Sc += 121 2  

 

Solving for c, the following results 
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c = [2(1+S)]1/2 

 

And the wavefunction can be written as 

 

( ) 
( )212/111 11

12
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),( ss

S
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+
=rr  

 

The value of the overlap integral S will depend on the size of the orbitals and also the 

internuclear separation.  The above wavefunction is an example of a bonding orbital as the 

value of the overlap S will be positive.  Positive overlap is a stabilizing condition and acts to 

hold a molecule together.  But just as a linear combination can be constructed from the sum of 

the 1s orbitals on the two H atoms, one can also be constructed from the difference. 

 

( )2111 11),( ssc −=rr  

 

This wavefunction will have negative overlap and thus produce an antibonding orbital which, 

if populated, has the effect of destabilizing the molecule. 

 

The Expectation Value for Energy 
 

The energies of these bonding and antibonding orbitals can be calculates from the following 

expressions 
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In this expression, H11 and H22 are the Coulomb integrals defined by 

 

= dsHsH iiii 1ˆ1  

 

It can be easily shown that H11 = H22 by symmetry.  The other type of integral (besides S, the 

overlap integral which has already been discussed) is H12, called the exchange integral. 

 

= dsHsH jiij 1ˆ1  

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

221 

 

 

The energy of the wavefunction is minimized by use of the variational principle.  Specifically, 

the coefficients c1 and c2 must be chosen so as to minimize the energy of the wavefunction.  This 

is done by differentiating the energy expression and setting it equal to zero (since the derivative 

will be zero at the minimum.)  For simplicity, the expression is rearranged so that implicit 

differentiation is easier to see. 
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Differentiation of this expression with respect to c1 and c2 yields two expressions which can be 

used to find the two unknowns, c1 and c2. 
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Since 0
1

=




c

E
 at the minimum, the second terms on the left sides of the above equations vanish.  

(How nice of them!)   
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These expressions can be rearranged. 
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So long as the Coulomb, Exchange and Overlap integrals can be determined, the coefficients can 

be as well.  The non-trivial solution for c1 and c2 can be found from the determinant of the matrix 

shown below being set to zero. 
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It can be shown (although it will not be shown here) that  

 

Hii = E(1s) + J 
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where E(1s) is the energy of a 1s orbital in hydrogen and J is an expression that depends on 

internuclear distance (r), given by 

 


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+= −

r
eJ r 1

12
 

 

Similarly, Hij can be determined from 

 

Hij = E(1s)S + K 

 

where K is given by 

 

)1( re
r

S
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Notice that the expressions for both J and K vanish as r approaches ∞.  Given these substitutions, 

the determinant equation becomes 
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Or 
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Being quadratic in E, this expression yields two solutions for the energy.  One will give the 

energy of the bonding orbital and the other will be the energy of the antibonding orbital.  (Now 

how much would you pay?)  These energies are given by the expressions 
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and 
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The following diagrams show the radial wavefunctions (across the z-axis of the molecule) for 

both the bonding and antibonding combinations of 1s orbitals.  The graph on the left shows the 

value of the wavefunction, while the one on the right shows the square of the wavefunction.  

Note the node in the middle of the molecule in the antibonding orbital! 

 

The following figures show the axial wavefunction for the  
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 = 1sA + 1sB 

 

bonding and the  

 

 = 1sA – 1sB 

 

antibonding orbitals (on the left) and the corresponding squared axial wavefunctions on the right. 

 

Bonding: 

 
 

Antibonding: 

 
 

These orbitals are easy to visualize and understand based on a pictorial approach of linear 

combinations of orbitals as well.  In the pictorial approach, the emphasis is on the sign of the 

function in the overlap region. 

 

 

Bonding and Antibonding Orbitals Constructed from s Orbitals 
 

The combination of 1s orbitals can be visualized in the following diagram 

 

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

224 

 

 
In this diagram, depicting the symmetric overlap to two 1s orbitals, it can be seen that the region 

of overlap will have a positive value (as it is given by the product of two positive numbers.  This 

is an example of a s orbital since it is cylindrically symmetric about the internuclear axis.   

 Just as the symmetric combination can be depicted, the antisymmetric combination is 

also easy to generate. 

 
In this depiction, it should be clear that the region of overlap has a negative value.  Another way 

to think about this is that the wavefunction must change sign as it crosses from left to right.  This 

implies a node between the nuclei! 

 As stated before, the positive overlap depicted in the first orbital is a stabilizing 

condition, and the negative overlap in the second is destabilizing.  This can be depicted in an 

orbital diagram. 

 
In this diagram, the atomic orbitals on the separated atoms are shown on the far right and left, 

and the orbitals in the middle column are the molecular orbitals that arise from the linear 

combination of the atomic orbitals.  g indicates the bonding orbital and u
* indicates the 

antibonding orbital resulting from the symmetric and antisymmetric combinations of the 1s 

orbitals.  The subscripts g and u state for gerade and ungerade respectively.  Gerade is a 

German word meaning even, which ungerade means odd.  Specifically, these terms (and 

subscripts) are used to indicate the symmetry of a function with respect to inversion.  The g/u 
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symmetry can be determined by drawing an arrow through the middle of a picture of a molecular 

orbital.  If the arrow ends in a point with the opposite sign, the wavefunction is ungerade.  

However, it must be noted that this symmetry applies only to homonuclear diatomic molecules 

(and other molecules that possess an inversion center symmetry elements.)  More will be 

discussed about molecular symmetry in later chapters. 

  

Bonding and Antibonding Orbitals constructed from p Orbitals 
 

Bonding and antibonding  orbitals can be constructed from p-orbitals that are aligned on axis.  

In the diagram below, the upper picture indicates an antibonding orbital while the lower image is 

a bonding orbital. 

 

 
In addition to  orbitals,  orbitals can also be constructed. 

 
Clearly the -bonding orbital is ungerade, while the -antibonding orbital is gerade (if an 

inversion center exists within the molecule.  It is also important to note that -type overlap is 

smaller than -overlap, due to the need to get two nuclei so close together for strong overlap of 
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the p orbitals in a  orientation.  As such, the  orbitals are less stabilizing or destabilizing 

relative to the atomic orbital energies. 

 

 
The  boding and antibonding orbitals will be formed by the symmetric and antisymmetric 

combinations of the pz orbitals on the separated atoms, whereas the  orbitals will be formed 

from the px and py orbitals from the separated atoms. 

 

Electronic Configurations 
 

Electronic configurations can be written for molecules just as they can be for atoms.  Instead of 

being numbered by the principle quantum number, however, molecular orbitals are numbered 

sequentially from the lowest energy orbital of a certain symmetry.  Consider the following list of 

electronic configurations for homonuclear diatomic molecules formed using the first ten 

elements. 

 

Molecule Electronic Configuration 
Bond 

Order 

Electronic 

State 

H2 (1g)
2 1 1g

+ 

He2 (1g)
2 (1u

*)2
 0 unbound 

Li2 KK (2g)
2  1 1g

+ 

Be2 KK (2g)
2 (2u

*)2 0 unbound 

B2 KK (2g)
2 (2u

*)2 (3g)
2 1 1g

+ 

C2 KK (2g)
2 (2u

*)2 (3g)
2 (1u)

2 2 3g
- 

N2 KK (2g)
2 (2u

*)2 (3g)
2 (1u)

4 3 1g
+ 

O2 KK (2g)
2 (2u

*)2 (3g)
2 (1u)

4 (1g
*)2 2 3g

- 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

227 

 

F2 KK (2g)
2 (2u

*)2 (3g)
2 (1u)

4 (1g
*)4 1 1g

+ 

Ne2 KK (2g)
2 (2u

*)2 (3g)
2 (1u)

4 (1g
*)4 (3u

*)2 0 unbound 

 

In this table, the older shell notation is used to indicate a filling of the inner shell electrons, 

(1g)
2 (1u

*)2.  These are given the symbol KK. 

 

 

Bond Order 
 

The bond order of a molecule is determined by adding the number of electrons in boding 

orbitals, subtracting the number of electrons in antibonding orbitals and dividing the result by 2 

(since there are two electrons per orbital.) 

 

Bond Order 
2

## gantibondinbonding−
=  

 

The larger the bond order, the stronger a chemical bond is predicted to be.  Also, since strong 

bonds are short bonds, the larger the bond order, the shorter a bond is predicted to be. 

 Ionization of a molecule may have a profound affect on the bond order, and therefore the 

bond length.  Consider the molecule C2 that has an electronic configuration given by  

 

C2: KK (2g)
2 (2u

*)2 (3g)
2 (1u)

2 

 

The addition of an electron to for C2
- will require the electron to go into the 1pubonding 

subshell.  This will have the effect of strengthening the bond (since it increases the bond order.)  

Removal of an electron to form C2
+ would weaken the bond since it involves the removal of a 

bonding electron. 

Paramagnetism 
 

While the bond order of oxygen (O2) is 

correctly predicted by a Lewis Structure, the 

Lewis structure fails to predict that the 

molecule will be paramagnetic.  

Paramagnetism is a property of a molecule or 

atom that occurs when the system has 

unpaired electrons.  These electrons each 

have  a small magnetic moment which can 

align with an external magnetic field, 

lowering the energy of the atom or molecule.  

As such, the atom or molecule will be 

attracted to a magnetic field. 

 Oxygen, which has an electronic 

configuration given by 
Photograph showing liquid oxygen being trapped in a 

magnetic field due to its paramagnetic nature. 
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O2: (1g)
2 (1u

*)2 (2g)
2 (2u

*)2 (3g)
2 (1u)

4 (1g
*)2  

KK (2g)
2 (2u

*)2 (3g)
2 (1u)

4 (1g
*)2 

 

 
 

It is clear that there are two unpaired electrons.  This is a property that cannot be predicted based 

on the Lewis Structure! 

 

Hund’s coupling cases (a) and (b) 
 

There are clearly sources of angular momentum in a molecule due to orbital and spin 

considerations.  But unlike atoms, molecules can also have angular momentum contributions 

from molecular rotation.  There are many ways to describe the coupling of these different types 

of angular momentum.  This text will focus on two specific cases, Hund’s coupling cases a and 

b. 

 

Hund’s case (a) 
 

In Hund’s case (a) coupling, the orbital and spin angular momenta are strongly coupled to the 

internuclear axis of the molecule.  This defines the quantum number  and , which are the 

internuclear axis projections of L and S.  The sum of  and  give the total electronic angular 

momentum along the internuclear axis, .  

 

 +  =  
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 is then coupled to the end-over-end rotational angular momentum of the molecule (R) to give 

J, the total angular momentum. 

 

J =  + R 

 

 
 

For a molecule that is well described by Hund’s case (a) coupling, that is in a 1 electronic state, 

the lowest value of J possible is J = 1.  The one unit of angular momentum comes from the 

orbital part of the wave function, so J = 1 actually describes a non-rotating molecule (R = 0)! 

 Hund’s case (a) does a good job of describing molecules which exhibit moderate spin-

orbit coupling.  If the coupling is extremely strong, another case (case (c), for example) is needed 

to describe the molecule’s properties. 

 

Hund’s case (b) 
 

Hund’s case (b) is slightly different from case (a) in that the spin angular momentum is 

uncoupled from the internuclear axis.  As such, in Hund’s case (b) coupling, the quantum 

numbers  and  are undefined.  In this case, the end-over-end rotation (R) of the molecule 

couples with  to produce N, which describes the sum of rotation plus orbital angular 

momentum.   

 

N =  + R 

 

N can then couple with S to give J, the total angular momentum. 

 

J = N + S 
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Singlet states, with S = 0, are always well described by Hund’s case (b) coupling.  Hund’s case 

(b) is a good description for molecules where spin-orbit coupling is weak (or immeasurably 

small.) 

 In the section describing the rotation of molecules as rigid rotators, the quantum number J 

was used to describe the total angular momentum due to rotation.  This is consistent with both 

Hund’s cases (a) and (b) for molecules in 1 states, where  = 0 and S = 0 (implying where 

appropriate that  = 0 as well.) 

 

Diatomic Term Symbols 
 

A term symbol for a diatomic molecule contains a great deal of information about 

symmetry properties of the wavefunction which describes the electronic state. The symmetry 

properties are closely related to the values of the quantum numbers which specify the 

wavefunction. The pattern used to assign a symbol to a value for a quantum number is very 

similar to the pattern used for atomic systems. The major difference is that the quantum numbers 

must reflect the cylindrical symmetry of diatomic molecules rather than the spherical symmetry 

of atoms. 

 

Quantum 

Number 

One Electron Many Electrons 

Atom (l) Molecule () Atom (L) Molecule () 

0 s  S  

1 p  P  

2 d  D  

3 f  F  

 

 Just as there is a (2l+1) degeneracy in the spherical wavefunctions, there is also an 

important degeneracy pattern in the wavefunctions of diatomic molecules.   and  states are 

singly degenerate whereas all other are doubly degenerate.  Why this is should become apparent 

as we develop the united atom method for decomposing spherical symmetry to cylindrical 

symmetry. 

 

 or  
Wavefunction 

Symmetry 
degeneracy 
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0   1 

1   2 

2   2 

3   2 

 

There are three methods commonly used to derive terms symbols for diatomic molecules. 

All of the methods are based on determining the quantum number  and the total spin quantum 

number. In the case of homonuclear diatomic molecules, the inversion symmetry is also 

important. 

 states have another important symmetry designation.   states can have either + or - 

symmetry depending on whether or not the state is symmetric with respect to reflection through a 

plane containing the internuclear axis.  Symmetric states are designated as + state and 

antisymmetric ones are -.  ,  and all other states with L ≠ 0 are doubly degenerate as they 

have both + and - components. 

There is always an odd number of S states generated for the United Atom method or the 

Separated Atom method.  They will come in pairs of +, - and the odd remaining state will have 

+/- symmetry as determined by the Wigner-Witmer rule.  For this, one must consider the 

associated atomic state (using either the United Atom or the Separated Atom method).  The +/- 

symmetry is determined by whether the indicated sum is even or odd according to the following 

table. 

 

Method Sum Value Parity 

United Atom L +  il  
even + 

odd - 

Separated Atom LA +  Al + LB +  Bl  
even + 

odd - 

 

United Atom Method 
 

Think of the molecule as an atom with the same number of electrons. The atom will have 

spherical symmetry. The task is to reduce the spherical symmetry of the atomic wavefunction to 

the cylindrical symmetry of the diatomic molecule. In this case, the z-axis of the unified atom 

becomes the internuclear axis of the molecule. Thus, the quantum numbers will transform as 

 

ML →  

S → S 

 

Example: What molecular terms are predicted for the OH radical? 

 

Solution: The unified atom with the same number of electrons as OH is fluorine. The ground 

state designation for atomic fluorine is 2P. For this state, L = 1 and so ML can be -1, 0 or +1. The 

only values of |ML| are 0 and 1. Therefore, the predicted terms will be  and  The multiplicity 

will be the same as the unified atom (S = 1/2). The  state will be symmetric with respect to 
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reflection though a plane containing the z-axis since  

 

L +  il  

 

is even for fluorine. So the expected terms are 

 
2+ and 2 

As it turns out, the ground state of OH is 2. The only way to confirm the ground state, however, 

is to use the molecular orbital method. 

 

 

Separated Atom Method 
 

A second method for determining molecular term symmetries is the separated atom 

method. This method is similar to the atomic term symbol method of writing out an exhaustive 

list of microstates and then accounting for each one. The quantum numbers which are important 

are determined from the sums of the z-component quantum numbers of the atomic 

wavefunctions. Thus, the values of  which are possible will be given by all possible 

combinations of ML.  Values of the same magnitude are then paired to make the two degenerate 

components for any values of || > 0. 

 

Example: What molecular terms arise for HLi, formed from a ground state hydrogen atom and a 

ground state lithium atoms? 

 

Solution: The ground state of lithium is 2S.  For this set of atoms, we can construct the following 

table to combine values of ML to form values of  and values of S as well. 

 

 H (2S) Li (2S)  and S 

ML 0 0 0 

S ½ ½ 1, 0 

 

It is clear that the only value of  that can be generated from these separated atom states is  = 

0, or a  state.  The sum of LA + LB + lA + lB is given by 0 + 0 + 0 + 0 = 0, which is even.  

Hence, the  state has + symmetry.  So the resulting states are 1g
+ and 3g

+.  The ground state 

of Li2 is 1g
+, but this can only be confirmed by the use of the molecular orbital method. 

 

 

Example: What molecular terms are predicted for the OH radical? 

 

Solution: The ground state atomic term for O is 3P and that for H is 2S. The following table 

shows the possible combinations of ML to form  and the combinations of S which form the 

familiar Clebcsh series of resultant S values. 
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 H (2S) O (3P)  and S 

ML 0 +1, 0, -1 +1, 0, -1 

S ½ 1 3/2, 1/2 

 

The combination of a P term and an S term gives one  ( = ±1) and one  ( = 0) term. The 

sum LA + LB + lA + lB is given by 1 + 0 + 4 + 0 and is clearly odd. Therefore, the  state will 

be of - symmetry. The spin quantum numbers which are possible are 3/2 and 1/2. Therefore, the 

possible term symbols are 4, 4-, 2 and 2-. (The ground state of the OH radical happens to be 

of 2 symmetry, but again, this can only be confirmed using a molecular orbital approach.)  

Notice that there is no g/u symmetry indicated in this case because the molecule does not include 

an inversion center being a heteronuclear diatomic molecule! 

 

 

Example: What molecular terms arise for CO formed from a ground state carbon atom and a 

ground state oxygen atom? 

 

Solution: The ground state of both C and O is 3P.  the following table summarizes the 

decomposition of the two atomic states from spherical to cylindrical symmetry. 

 

 C (3P) O (3P)  and S 

ML +1, 0, -1 +1, 0, -1 ±2, ±1, ±1, 0, 0, 0 

S 1 1 2, 1, 0 

 

The resultant state are , 2  and 3 .  Of the three  states, two will form a pair of +/-.  The 

last S state must have its +/- symmetry determined by the Wigner-Witmer rule. 

 

LC + LO + lC + lO = 1 + 1 + 2 + 4 = 8 (even) 

 

So the final  state is +.  The spin states generated are quintet, triplet and singlet.  So the set of 

molecular states generated are 

 
5, 5, 5, 5 +, 5 -, 5+ 
3, 3, 3, 3 +, 3 -, 3+ 
1, 1, 1, 1 +, 1 -, 1+ 

 

The ground state of CO is in fact 1+, but as always, this can only be reliably predicted using the 

molecular orbital method. 

 

 

The number of states generated from separated atoms increases rapidly as the angular 

momentum in the separated atoms increases. 
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Molecular Orbital Method 
 

The molecular orbital method requires the construction of a molecular orbital diagram.  As was 

the case in the atomic term symbol problem, the molecular terms can be constructed considering 

only partially filled subshells. 

The quantum numbers will then be given by the vectoral sums of the one-electron 

quantum numbers. Consider the orbital diagram for the oxygen molecule. 

 

The only important electrons in this case are the two g
* electrons. (Ignore all of the ones 

in completely filled subshells - just as was done in the case of atoms as these always contribute  

= 0 and S = 0.) The orbital angular momentum  of one of the g
* electrons will cancel that of 

the other as one will have a value of  = -1 and the other has  = +1. (This is similar to the 

atomic case where one electron was in an orbital with ml = -1 and the other in an orbital with ml 

= +1. The sum of the two is zero.) Thus,  will be 0. Hence the predicted term will be a  state.  

Since one of the g
* orbitals is symmetric with respect to reflection through a plane 

containing the nuclei and the other is antisymmetric, the predicted term will be anisymmetric 

with respect to this symmetry operation. 

 

(sym) x (antisym) = antisym  

 

Thus, the state will be of - symmetry. In a similar manner, the gerade/ungerade symmetry can 

be determined by the product of the one-electron orbital symmetries. 

 

(g) x (g) = g  

 

Finally, the spin multiplicity can be determined in the usual way. 

 

S = s1 + s2, s1 + s2 - 1, ..., |s1 - s2| 
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S = 1 and 0  

 

The predicted terms for this electronic configuration are 3g
- and 1g

-. The ground state of 

O2 is g
-. And since this result was generated using the molecular orbital method, the result is 

reliable that this is indeed the ground state of the O2 molecule! 

 

Herzberg Diagrams 
 

One of the important reasons for describing the electronic structures and angular 

momentum coupling in diatomic molecules is to apply these descriptions to the prediction of the 

rotational branch structure in molecular spectra.  As always, the first concern when predicting 

patterns in molecular spectra is the determination of selection rules.  The selection rules for 

which the transition moment does not vanish are summarized below. 

 

S = 0 

 = 0, ±1 

+  -, -  + 

 

Based on these selection rules, Herzberg diagrams can be used to predict the rotational branch 

structure and “first lines” in each branch based on the symmetries of upper and lower states in a 

given transition. 

 In order to discuss this very useful tool, we shall begin by discussing the description of a 

single state, starting with simple symmetry (1+).  In order to proceed, it is important to note the 

+/- symmetry of rotational wavefunctions.  Basically, the rotational wavefunction is symmetric 

with respect to reflection through a plane containing the internuclear axis if R is even, and 

antisymmetric if R is odd.  Thus the symmetry of the total wavefunction, given by 

 

tot = elecvibrot 

 

is given by the product of the symmetries of elec, vib and rot.  In the case of a 1+ state, elec is 

+.  vib is always + for vibration of a diatomic molecule.  The rotational contribution (yrot) will 

alternate for increasing R or J.  (In the case of a 1+ state, R and J have the same value, since  = 

0 and S = 0.) 

 

 
The above Herzberg diagram summarizes the +/- symmetry for the first few rotational levels.   
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Based on this diagram, and the selection rule that +  - and -  +, the branch structure 

for a 1+ 1+ transition can be predicted.  Clearly, R- and P-branches are predicted in the 

rotational structure.  This is the proper Herzberg diagram for the description of the 1-0 rotation-

vibration spectrum of HCl (or other closed shell heteronuclear diatomic molecules.)  Notice that 

J = 0 (Q-branch) transitions are impossible since the parity (+/- symmetry) does not change in 

such transitions, and hence they are forbidden. 

The Herzberg diagram description of a 1- state is not too different than that for a 1+ 

state.  The only difference is that the +/- symmetry changes such that levels with odd J are now + 

and those with even J are now -. 

 

  
 

 The description of a 1 state can be based on modifications to the descriptions of 1+ and 
1- states.  Two important differences must be taken into account.  First, since J is given by the 

sum of  and R (or  and R in Hund’s case (a), but this will only be important if S ≠ 0, which is 

not the case for a singlet state.)  Second, since  states (like , , etc.) have two components, 

both must be included in the diagram. 
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The description of a 1 – 1+ transition can now be constructed.  Note that P- Q- and R-

branches are predicted.  Also notice the “first line” in each branch.  If the  state is the upper 

state, the first lines in each branch are P(2), Q(1) and R(0).  (There can be no P(1) line as the J = 

0 level is missing in the upper state.)  This is a pattern is a one way to recognize a 1 – 1+ 

transition. 

A reversal of state, such that the 1+ state is the upper state, causes the pattern to change.  

In the case of a 1+ - 1 transition, he first lines in each branch are predicted to be P(1), Q(1) and 

R(1). 
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A 1 – 1 transition becomes a little more complex as well.  In this case, it can be seen that there 

are two Q-branches predicted!  These will be resolved only if the two  components of at least 

one of the  state are significantly different in energy.  The first lines are predicted to be P(2), 

Q1(1), Q2(1) and R(1). 

 While the description here has been limited to singlet states of  and  symmetry, these 

tools can be extended to describe and predict a great deal of rotational fine structure patterns in 

spectroscopic transitions (Herzberg, 1950).  The patterns can get extremely complex for systems 

with high spin or orbital angular momenta.  The picture can become even more complex when 

nuclear spin exists in the molecule which can couple to orbital, spin and/or rotational angular 

momenta.  Entire books are dedicated to sorting out these patterns and interpreting the spectra of 

molecules which require these considerations (Brink, 1994) (Bunker, 2009). 

 

Vibronic Transitions 
 

Just as rotational motion is important in understanding vibrational spectra, vibrational (as 

well as rotational) motion(s) are important in understanding electronic transition is molecules.  

Electronic transitions in which vibrational structure is resolved are sometimes referred to a 

vibronic transition.  When rotation is thrown in to the mix, the term “rovibronic transitions” is 

sometimes used. 

Vibronic transitions can be discussed in terms of the transition moment.  Keeping in mind 

that the wavefunction for a vibronic state can be expressed as a product 

 

tot = elecvib 

 

and that the transition moment is given by 

 

   dtottot

*
 

 

Substitution yields 
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( ) ( )  dvibelecvibelec

*
 

 

Since the dipole moment operator is a derivative operator, the chair rule must be employed, 

which yields 

 

 +  dddd vibvibelecelecvibvibelecelec

**** 
 

 

Since the electronic wavefunction must be orthogonal, the first term will vanish for transitions 

between two different electronic states.  The second term however, does not vanish.  In face, the 

magnitude of the   dvibvib

*
 will be determined by the overlap of the two vibrational levels.  

(Note that since these represent vibrational wavefunctions in different electronic state, there is no 

reason for the wavefunctions to be orthogonal.) 

 

Franck-Condon Factors 
 

The intensity of a band in a vibronic transition will be governed by the magnitude of the Frank-

Condon Factor for the band.  The Franck-Condon factor (FCF) is defined by 

 

FCF =  2
"'

  dvibvib  

 

which is governed purely by the degree of overlap between the upper state vibrational 

wavefunction and that in the lower state.  The overlap will be large for v = 0 if the potential 

energy functions of the upper and lower states are similar (similar e, exe, re, etc.) and strong 

sequences will be observed in the spectrum.  If, however, the equilibrium bond length changes 

significantly, the maximum Franck-Condon overlap will occur for combinations of v’ and v” for 

which v ≠ 0.  In these cases, strong progressions will be observed. 

 The Franck-Condon principle is closely associated with the Born-Oppenheimer 

approximation.  In cases where the Born-Oppenheimer breaks down, the Franck-Condon 

principle is compromised as well. 

 

Term Symbols for Polyatomic Molecules 
 

Term symbols are used to designate electronic states of polyatomic molecules, much the 

same as they are used to designate electronic states for both atomic systems and diatomic 

molecules.  These can be derived in much the same manner as we have developed for diatomic 

molecules, by taking combinations of atomic orbitals, whose symmetries have been decomposed 

from the spherical symmetry of the atoms to the lowered symmetry of the molecule. 

 An example would be H3
+, which is the most common triatomic ion in the universe.  (It is 

also an excellent example of a three-center two-electron bond in so far as it is the simplest 

example of a molecule possessing such a bond!)  The combination of three 1s orbitals on the 
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three atoms will yield three molecular orbitals.  The decomposition of symmetry is described in 

the following section. 

 

Group Theoretical Approach to Molecular Orbitals 
 

 One of the more powerfully predictive things we can do with Group Theory is predict the 

symmetries of molecular orbitals. Molecular orbital symmetries can have huge ramification on 

chemical bonding and chemical reactions. 

 The first thing we would like to be able to do is to predict the symmetries of the 

molecular orbitals that arise from the linear combinations of atomic orbitals.  This is not too 

difficult.  In fact, the process has many aspects in common with determining molecular vibration 

symmetries.  The process can be summarized as follows: 

 

1. Separate the molecule into groups of equivalent atoms.   

2. For each set of equivalent atoms, determine the reducible representation that describe the 

atomic orbitals to be used in the construction of molecular orbitals.  This is determined by 

assuming that the point group is centered on an atom containing the orbitals.  Call this 

ao. 

3. Determine unmoved for the set of equivalent atoms. 

4. Multiply ao  unmoved to determine reducible for each set of equivalent atoms. 

5. Add all of the reducible that you have determined for each individual set of equivalent 

atoms.  Call the result MO. 

6. MO can then be resolved into components.  These components give the symmetries of 

the molecular orbitals that result from the linear combinations of the atomic orbitals you 

have selected. 

 

Example: The Molecular Orbitals for a Water Molecule 

 

Solution: For this example, we shall consider the 1s orbitals on the H atoms, and the 2s and 2p 

orbitals on O.  As it turns out, s orbitals are always totally symmetric in any point group, since 

they possess spherical symmetry.  The p orbitals will transform as the x, y and z axes.  So the 

following set of tables is used to generate MO for water. 

 

First, determine H describing the H atoms. 

 

C2v E C2 xz yz 

H(1s) 1 1 1 1 

unm 2 0 0 2 

H 2 0 0 2 

 

Next, determine O describing the four orbitals on the O atom. 

 

C2v E C2 xz yz 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

241 

 

O(2s) 1 1 1 1 

O(2p) 3 -1 1 1 

red 4 0 2 2 

unm 1 1 1 1 

O 4 0 2 2 

 

Next, determine MO as the sum of H + O 

 

C2v E C2 xz yz 

H 2 0 0 2 

O 4 0 2 2 

MO 6 0 2 4 

 

Now, decompose MO under C2v symmetry! 

 

 

C2v E C2 xz yz 

MO 6 0 2 4 

−  3 3 3 3 

 3 -3 -1 1 

-B1 1 -1 1 -1 

 2 -2 -2 2 

-2 B2 2 -2 -2 2 

 0 0 0 0 

 

So  

 

MO = 3 A1 + B1 + 2 B2 

 

 

The molecular orbitals of water are shown below.  
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(The above orbitals are generated based on a PM3 (semiempirical) orbital calculation of water.  

The numbering does not match the actual orbitals, but the symmetries are correct.) 

 

The 1a1 orbital was not generated in this example because it is essentially the 1s orbital on 

oxygen, which was not included in the basis set of functions we originally used.  Also missing 

from our set are the 2b2 and 3b2 orbitals, which require the addition of 3px and 3dxz orbitals on 

oxygen, which were not included.  These orbitals are “virtual orbitals” as they are unoccupied. 

 

The electronic configuration of H2O is given by 

 

(1a1)
2 (2a1)

2 (1b2)
2 (3a1)

2 (1b1)
2 

 

The overall symmetry of the electronic state is given by the product of the se symmetries, 

counting each one twice since each orbital contains two electrons.  In fact, all closed shell 

molecules (all subshells filled) will have an electronic symmetry that is totally symmetric.  In 

this case, the electronic state is 1A1. 

 If the lowest unoccupied molecular orbital is of B2 symmetry, then the first excited state 

of the molecule will be 
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… (1b1)
1 (4a1)

1 

 

The total electronic symmetry is given by B1  A1 = B1.  The electronic configuration would 

give rise to both singlet and triplet states.   

 To test whether or not the transition to this state is allowed, the transition moment 

integral must not vanish. 

 

 
















=  dA

A

B

B

Bd 1

1

2

1

1"'


 

 

This integral clearly will not vanish by symmetry for the component along the x-axis.  Hence, the 

transition to this excited state of water will be a perpendicular transition. 

 

Example: Formaldehyde 

 

To generate the molecular orbitals in formaldehyde, consider the 1s orbitals on H, the 2s and 2p 

orbitals on C and O. 

 

First, determine H describing the H atoms. 

 

C2v E C2 xz yz 

H(1s) 1 1 1 1 

unm 2 0 0 2 

H 2 0 0 2 

 

Next, determine C and O describing the four orbitals on the C atom and the O atom. 

 

C2v E C2 xz yz 

C(2s) 1 1 1 1 

C(2p) 3 -1 1 1 

red 4 0 2 2 

unm 1 1 1 1 

C 4 0 2 2 

 

 

C2v E C2 xz yz 

O(2s) 1 1 1 1 

O(2p) 3 -1 1 1 

red 4 0 2 2 

unm 1 1 1 1 
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O 4 0 2 2 

The total reducible representation to be reduced is given by H + C + O. 

 

C2v E C2 xz yz 

H 2 0 0 2 

C 4 0 2 2 

O 4 0 2 2 

MO 10 0 4 6 

 

Decomposition of this reducible representation shows 

 

MO = 5A1 + 2B1 + 3B2 

 

 

The electronic configuration for formaldehyde is given by 

 

(1a1)
2 (2a1)

2 (3a1)
2 (4a1)

2 (1b2)
2 (5a1)

2 (1b1)
2 (2b2)

2 

 

The (1a1) and (2a1) orbitals did not come from the above analysis as they are essentially the as 

orbitals on O and C that were not included in the basis set.  The lowest energy unoccupied orbital 

is (2b1), so the first excited electronic state will have an electronic configuration given by 

 

… (5a1)
2 (1b1)

2 (2b2)
1 (2b1)

1 

 

This yield both triplet and singlet spin functions and an orbital function with symmetry given by 

b2  b1 = a2.  And as it turns out, the first electronic transition in formaldehyde is orbitally 

forbidden since no choice of a component of the dipole moment operator can be used to create a 

totally symmetric integrand for the electric dipole transition moment integral. 

 

 
















 dA

A

B

B

A 1

1

2

1

2
 

 

In order to see this transition in formaldehyde, there must be some involvement from vibrational 

motion that changes the symmetry of the overall wavefunction.  Recall that 

 

tot = elecvib 

 

if the Born-Oppenheimer approximation holds.  The symmetries for the vibrational 

wavefunctions (which can be derived using the method previously discussed) are given by 

 

vib = 3 A1 + B1 + 2 B2 
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So excitation of a B1 or B2 vibrational mode (yielding an overall symmetry for the total 

wavefunction of either B2 or B1 respectively) will cause the transition to “turn on”.  This type of 

vibronically allowed transition is not uncommon (similar behavior is observed in benzene) and 

is characterized by a missing 0-0 band in the electronic spectrum of the molecule. 
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Learning Objectives 
  

After mastering the material covered in this chapter, one will be able to: 

 

1. Describe the Born-Oppenheimer Approximation and how it is used to construct potential 

energy surfaces describing the vibration of a diatomic molecule. 

2. Construct a molecular orbital diagram for a diatomic molecule depicting both bonding 

and antibonding orbitals of  and  symmetries including inversion symmetry (g/u) as 

appropriate for homonuclear diatomic molecules. Utilize the diagram to  

a. Predict the ground state electronic configuration of a diatomic molecule, 

including 
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i. Magnetic properties 

ii. Bond order 

3. Describe the differences between Hund’s Angular Momentum Cases (a) and (b) and how 

these cases manifest in the resulting energy levels in real molecules. 

4. Determine molecular term symbols for diatomic molecules using the 

a. United Atom Method 

b. Separated Atom Method 

c. Molecular Orbital Method 

5. Construct Herzberg Diagrams and use them to 

a. Determine the band structure of a spectroscopic transition, including the “first 

line” in each branch. 

6. Derive the formulation for the Franck-Condon factor and explain how it determines 

relative intensity of vibrational bands in an electron transition. 

7. Utilize the tools of Group Theory to predict the symmetries of the molecular orbitals that 

arise from linear combinations of atomic orbitals for a polyatomic molecule. 

Problems 
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