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Chapter 2: Particle in a Box 
 

In this chapter, we will develop the theoretical problem of a particle in a box.  The 

purpose here is to explore the capabilities of quantum mechanics and see how some of the 

mathematical machinery works.  The reason for “kicking the tires” of quantum theory with this 

particular problem is that the math is fairly simple (at least by comparison!) and the results are 

relatively easy to interpret.  After developing a toolbox of methods in this chapter, we can focus 

more on the results as applied to more complex problems of greater chemical importance.   

 

Background 
At the beginning of the 1900s, there was actually a great deal of debate as to whether or 

not science was a valuable subject for study.  At the time, Newtonian physics had proven to be a 

very reliable model for predicting the behavior of the observable universe.  However, as was 

discussed in Chapter 1, the figurative scientific roof was about to collapse with the advent of a 

quantum theory. 

Quantum theory attempts to do many of the same things that classical (Newtonian) 

physics does.  The goal is to be able to model the behavior of particles and predict how they will 

behave in the future.  In classical physics, this is accomplished by deriving an equation of 

motion for a particle.  With such an equation, and a few initial parameters (such as position, 

velocity and acceleration at time t=0) the entire trajectory of a particle can be predicted as time 

moves forward. 

The equivalent construct in the quantum theory is a wavefunction.  The wavefunction for 

a system contains all of the information needed to predict what can be measured and observed in 

terms of the properties of the particle or system.  The rules describing a wavefunction are not 

arbitrary, however.  Based on a few simple postulates (given below) the requirements of the 

wavefunction are outlined, and the entire quantum theory is defined. 

 

The Postulates of Quantum Mechanics 
There are only a small number of postulates of quantum mechanics.  Upon them is built 

all of the conclusions of this powerful theory. 

 

Postulate 1 

 

The state of a quantum-mechanical system is completely specified by a function (r,t) 

that depends on the coordinates of the particle (r) and the time (t).  This function, called 

the wavefunction has the important property that 

 

*(r,t)  (r,t) dx dy dz 

 

is the probability of finding the particle within the infinitesimally small volume element 

dxdydz located at position r at time t. 
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Postulate 2 

 

To every physical observable in classical mechanics, there corresponds an operator in 

quantum mechanics.  This operator will be both linear and Hermitian. 

 

 

Postulate 3 

 

In any measurement of the observable associated with the operator Â, the only values that 

will ever be observed are the eigenvalues a which satisfy the eigenvalue equation 

 

Â = a 

 

It is important to note that the wavefunction describing the particle need not be an 

eigenfunction of the operator Â.  However, well defined wavefunctions (those meeting 

the requirements of all of the postulates of quantum mechanics) will have the possibility 

of being described as a linear combination of eigenfunctions of any of the needed 

operators.  The Superposition Principle is invaluable in working with this concept. 

 

Postulate 4 

 

If a system is in a state described by a normalized wavefunction () then the average 

measured value of the observable corresponding to Â is given by 

 

 = dAa ˆ*  or  







=





d

dA
a

*

* ˆ

 

 

Postulate 5 

 

The wavefunction of a system evolves in time according to the time dependent 

Schrödinger equation 

 

 ( , ) ( , )H t i
t

t r r= 



 

 

Each of these postulates has important consequences and ramifications as to what 

quantum theory can (and cannot) tell us about a particle or system.  In the remainder of this 

section, we will explore each postulate individually in order to lay a foundation of what quantum 

mechanics can predict for us about the nature of matter. 
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Postulate 1: a Squared Wavefunction is a Probability Distribution 
This postulate describes the commonly accepted interpretation of a wavefunction.  First 

and foremost, a wavefunction is a mathematical function.  It must be single valued in that for 

each point in space, there is only one value that can be calculated from the function.  When 

considering all space which a particle may occupy, the squared wavefunction must create a 

smooth1 and continuous probability distribution describing where the particle might be observed 

to be located.  (for our purposes, “smooth” means that the first derivative of the function must be 

continuous.)  Since the square of the wavefunction is a probability distribution for the location of 

the particle, any location in space where the squared wavefunction is zero, has a corresponding 

probability of zero that the particle will be observed at that location. 

 

Example.  Consider a particle of mass m in  box of length a that is prepared such that it’s wave 

function is given by  

( )xax
a

x −=
5

30
)(  

Calculate the probability that the particle will have a position measurement reveal the particle to 

be in the middle half of the box (with the measured position satisfying 4
3

4
aa x  .) 

 

Solution.  The squared wavefunction gives the probability distribution for where the particle’s 

position will be measured to be. 
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The total probability will be given by the following integral. 
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1 The wavefunction will be smooth provided that the potential energy function is not discontinuous. A discontinuous 

potential energy function (such as a step function) will lead to a wavefunction that which single-valued, will not 

have a continuous first derivative, and therefore, not be “smooth” in the strictest sense. 
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Note that the final probability is unitless! 

 

 

The wavefunction contains all of the information about a system that is needed to 

understand how the system behaves and how it will behave in the future, at least within the limits 

of the quantum theory!  Information on such properties as energy, momentum and position are 

all contained in the wavefunction.  

 

Postulate 2: Quantum Mechanical Operators 
The second postulate describes the nature of quantum mechanical operators and their 

relationship to those properties of a system which we can observe.  The operators are the tools 

that pull physical information from the wavefunction and reveal the properties of the quantum 

mechanical system.  The following table shows some operators and their corresponding 

physically observable quantities. 

 

 Physical Observable One Dimension Three Dimensions 

x̂  Position x r 

p̂  
Momentum 

dx

d
i−  −


i  

Ĥ  Energy UT ˆˆ +  

     T̂  
     Kinetic 

2

22

2 dx

d

m


−  2

2

2
−

m


 

     Û       Potential U(x) U(r) 

 

A derivation of the momentum operator in one dimension 

 

Let’s assume that we can describe the spatial part of a wave function using a plane wave 

expression 

 

𝜓(𝑥) = 𝑒𝑖𝑘𝑥 

 

Where k is the plane wave vector, which can be expressed as  

 

𝑘 =
2𝜋

𝜆
 

 

If we use the de Broglie expression for the wavelength 𝜆 =
ℎ

𝑝
,  

 

𝑘 =
2𝜋𝑝

ℎ
=

𝑝

ℏ
 

 

So 
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𝜓(𝑥) = 𝑒
𝑖𝑝𝑥

ℏ  

 

 

 

Each of these operators will have two very important properties.  1) Each is linear and 2) 

each is Hermitian.  In one dimension, an operator ( Â ) is defined to be linear if the following 

condition holds: 

 

( ) )(ˆ)(ˆ)()(ˆ xgAbxfAaxbgxafA +=+  

 

where a and b are scalar values.  An example of a linear operator is multiplication by a constant 

or a function.  Taking a derivative (or integrating) is also a linear operation, as is adding a 

constant or a function.  An example of a non-linear operator is taking a logarithm or raising a 

function to a power other than one. 

The Hermitian nature of quantum mechanical operators has many important 

consequences. An operator ( Â ) is Hermitian if it satisfies the following relationship: 

 

∫ 𝑔∗𝐴̂𝑓 𝑑𝜏 = ∫ 𝑓𝐴̂∗𝑔∗ 𝑑𝜏 

for well-behaved2 functions f and g, where the asterisk (*) indicated the complex conjugate of the 

function or operator.  Hermitian operators have the important properties that 1) their 

eigenfunctions are orthogonal and 2) their eigenvalues are real.  This will be demonstrated later 

for the eigenfunctions of the Hamiltonian. 

 

Example: Is the operator 
𝑑

𝑑𝑥
 a Hermitian operator? 

 

Solution: For an operator 𝐴̂ to be Hermitian, the following relationship must hold (for well-

behaved functions f and g: 

 

∫ 𝑔∗𝐴̂𝑓 𝑑𝜏 = ∫ 𝑓𝐴̂∗𝑔∗ 𝑑𝜏 

 

So if we choose arbitrary functions f and g, we can evaluate the left-hand side of the above 

relationship by noting the pattern 𝑑(𝑢𝑣) = 𝑢 𝑑𝑣 + 𝑣 𝑑𝑢 and integrating by parts. Using this 

approach 

 

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 −  ∫ 𝑣 𝑑𝑢 

 

Making the substitutions that 

 

𝑢 = 𝑔∗ 

 
2 A well-behaved function is one that is normalizable and continuous over the relevant space of the problem. 
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𝑑𝑣 =
𝑑

𝑑𝑥
𝑓 𝑑𝑥 

 

it should be clear that 

 

𝑑𝑢 =
𝑑

𝑑𝑥
𝑔∗𝑑𝑥 

 

𝑣 = 𝑓 

 

So 

 

∫ 𝑔∗
𝑑

𝑑𝑥
𝑓 𝑑𝑥 = 𝑔∗𝑓|−∞

∞ − ∫ 𝑓
𝑑

𝑑𝑥
𝑔∗ 𝑑𝑥 

 

In order for f and g to meet the criteria that they are normalizable, they must vanish as x 

approaches ±∞. As such, 

 

𝑔∗𝑓|−∞
∞ = 0 

 

And we are left with 

 

∫ 𝑔∗
𝑑

𝑑𝑥
𝑓 𝑑𝑥 = − ∫ 𝑓

𝑑

𝑑𝑥
𝑔∗ 𝑑𝑥 

 

Which clearly can not be true. Therefore, the operator 
𝑑

𝑑𝑥
 is not Hermitian. You should, however, 

be able to use the same method to show that the operator 𝐴̂ =  𝑖
𝑑

𝑑𝑥
 is in fact Hermitian! 

 

 

Postulate 3: Measurable Values 
Postulate three states that the only measurable values for a system are those values that 

are eigenvalues of the corresponding quantum mechanical operator.  The first measurable value 

which we will explore is the energy of the system (see below.)  Because the wavefunction 

provides a probability distribution, it also provides a means of predicting the statistics for a 

theoretical infinite set of measurements on a system.  The ramifications of that point are 

developed in the discussion of the fourth postulate. 

 

Postulate 4: Expectation Values 
An expectation value is an average value that would be expected based on an infinite 

number of measurements.  Since wavefunctions give us probability information, it stands to 

reason that we can calculate a great deal of statistical information about a system based on the 

wavefunction and the corresponding operators.  This will be discussed in detail in section D with 
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regards to expectation values calculated for position, momentum and energy.  It is important to 

note that the expectation value does not indicate the most probable measurement or observation 

that will be made, nor must it even give a value that can ever be measured; it just gives the 

average. 

This postulate has very important (and controversial) ramifications.  It forms the basis for 

how the Heisenberg Uncertainty Principle can be discussed.  The problem is that quantum 

mechanics cannot tell you what will be measured, but rather only the probability that a certain 

value can be measured for a specific property.  While a subtle point, it shakes the very nature of 

our intuition as to what it means for a system to have a certain property.  In most cases, the 

properties we associate with classical particles do not even exist in quantum mechanical particles 

(at least in any sense to which we are accustomed) until those properties are measured.  This has 

led to numerous debates as to the validity of quantum mechanics as a model, and even led one of 

the original developers of quantum theory (Erwin Schrödinger) to change his mind completely 

on the model. 

 

Postulate 5: the evolution of a system in time 
The 5th postulate indicates how a system will evolve in time.  It also gives the definition 

of the time dependent Schrödinger equation. 

 

We will explore many of these properties based on the particle in a box problem in order 

to gain some insight into what quantum mechanics can and can not tell us about a system.  The 

particle in a box problem actually has limited physical application (although it does have some), 

but does provide a “thought sandbox” in which we can explore the concepts, powers and 

limitations of the quantum theory.  Hopefully then when we apply the theory to problems of 

greater chemical interest, we can focus more on the conclusions than on the specific 

mathematics. 

 

The One-Dimensional Particle in a Box 
Imagine a particle of mass m constrained to travel back and forth in a one dimensional 

box of length a.  For convenience, we define the endpoints of the box to be located at x = 0 and x 

= a.  The derivation of wavefunctions and energy levels and the properties of the system using 

the tools of quantum mechanics will be instructive as we move forward in our studies of 

quantum mechanics. 

 

The Hamiltonian 
Whenever we begin a new quantum mechanical problem, the first challenge is to write 

the Hamiltonian that describes the system.  This always has two parts – a Kinetic Energy term 

(which is always the same for each particle) and a Potential Energy term (that is different for 

each new system.) 

The kinetic energy term in one dimension for a single particle is always given by  

 

2

22

2
ˆ

dx

d

m
T


−=  
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This operator can be derived from the momentum operator based on the relationship between 

momentum and kinetic energy that comes from classical physics.  Namely 

 

m

p
T

2

2

=  

 

As such, 
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22
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dx
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m

i

dx

d
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p
T







−=

−
=
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
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



−=

=

 

 

 The potential energy function is also fairly 

simple for this problem.  The potential energy is infinite 

outside of the box (x < 0 and x > a) and zero every place 

else.  This forces the particle to be in the box at all times.  

It also limits the relevant space of the problem to lie 

between x = 0 and x = a since the infinite potential 

energy precludes the particle from ever existing outside 

of the limits of x = 0 and x = a. 

 

axif

axif

xif

xU







= 00

0

)(  

 

So for the problem, limited to the space inside the box, the Hamiltonian can be written 

 

2

22

2
ˆ

dx

d

m
H


−=  

 

And the Schrödinger equation can be written as 

 

)()(
2 2

22

xEx
dx

d

m
 =−


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where (x) is the wavefunction describing the state of the particle.  There are a number of 

approaches that can be used to solve this equation to find the wavefunctions (x) which satisfy 

the differential equation. 

 

The Solution 
We will solve this problem two different ways.  First, we will solve it using the de 

Broglie wavelength (an algebraic solution) and then using the Schrödinger equation (an 

eigenvalue/eigenfunction approach.) 

 

The de Broglie Approach 
Before trying to solve the problem using Schrödinger’s equation, let’s use the de Broglie 

condition to solve the problem algebraically.  Recall that de Broglie suggested that a particle can 

be treated as a wave, the wavelength of which is given by  = h/p, where h is Planck’s constant, 

and p is the momentum of the particle. 

The necessary conditions on the de Broglie wave are that the wave itself must vanish at 

the ends of the box (in order to satisfy the first postulate, since the particle can never escape the 

box.)  This will happen for very specific wavelengths which are dependent on the length of the 

box itself.  This is very common in physics for any system with a wave nature.  When the wave 

is constrained to a specific geometry, the system will “ring” with frequencies (and thus 

wavelengths) characteristic of the medium and the geometry.  Quantum mechanical systems are 

no different in that regard. 

What will be required in order to create a standing wave is that the length of the box (a) 

must be an integral multiple of half de Broglie wavelengths (/2). 

 

2


na =  

 

Given that the de Broglie wavelength is related to momentum, it is simple to derive the following 

relationship, indicating the possible values for momentum. 
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Given the relationship between momentum and kinetic energy, the expected expression for 

energy levels can be derived. 

 

2

2222

822

1

2 ma

hn

a

nh
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p
E =








==  

 

And since the energy depends on n2, the spacings between successive energy levels increases as 

the energy increases. 

 = a = 2a

 = 2a/3  = a/2
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 Now let’s see if we can derive this expression based on the Schrödinger equation. 

 

The Schrödinger equation: the wavefunctions 
The time-independent Schrödinger equation can be written 

 

 EH =ˆ  

 

Where H is the Hamiltonian operator that was derived in section B.2,  is the wavefunction 

describing the system, and E, the eigenvalue of the Hamiltonian, gives the energy.  The 

wavefunctions are derived so that they are eigenfunctions of the Hamiltonian operator. 

Substituting the specific statement of the Hamiltonian 

 

 E
dx

d

m
=−

2

22

2


 

 

For convenience, we can gather all of the constants in one place by making a substitution 

 

2

2 2



mE
k −=−  

 

Particle in a Box Energy Levels
E

n
e
rg

y

n = 1 

n = 2 

n = 3 

n = 4 

n = 5 
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The particular choice if the form of this substitution is made to simplify the solutions by avoiding 

(for now) imaginary functions.  With the substitution, the Schrödinger equation can be rewritten 

as 

 

 2

2

2

k
dx

d
−=  

 

As was the case for the classical wave-on-a-string problem, this is a second order ordinary 

differential equation, and this has two linearly independent solutions.  A general solution is given 

by a linear combination of two linearly independent solutions, so one way to write a solution is 

 
)cos()sin( kxBkxA +=  

 

 Now we can focus on evaluating A, B and k based on the boundary conditions.  The 

boundary conditions are that the wavefunction must go to 0 at the ends of the box, in accordance 

with the first postulate. 

 The first boundary condition, (0) = 0, yields the following result: 

 

00

)0cos()0sin()0(

=+=

+=

B

kBkA
 

 

So B = 0 and the cosine term must vanish.  Focusing only on what has not vanished from the 

solutions, the second boundary condition, (a) = 0, can be applied. 

 
0)sin()( == akAa  

 

There are two trivial ways to make this true.  One is to make A = 0 and the other is to make k = 

0.  Both are trivial solutions and unimportant (but fun to mention in class!)  The other way to 

force the function to 0 at x = a is to insure that the sine function is zero by forcing 

 

nak =  

 

where n is an integer (n = 1, 2, 3 …), since the sine function crosses zero every n radians.  This 

is an important point: the application of a boundary condition leads to the introduction of a 

quantum number and fixed the results to only functions where that number has a value taken 

from a very specific list.  In fact, the origin of quantum numbers  in all problems is the result of 

the application of boundary conditions. 

Solving for k and substituting yields 

 









=

a

xn
Ax


 sin)(  

 

This is as far as the boundary conditions can get us.  The value of A is determined based on the 

first postulate of quantum mechanics, which says that the square of the wavefunction must give a 
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probability distribution as to where the particle can be measured to be.  Since all measurements 

must place the particle in the box, the sum of probabilities at all of the possible locations in the 

box must equal unity.  This implies the condition that 

 

( ) =

a

dxx
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2
1)(  

 

Solving for A yields 
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Notice that the value of A did not depend on the quantum number n.  Normalization 

constants usually do have some dependence on the quantum numbers that arise from the 

application of boundary conditions, but this is one of the rare problems in which the 

normalization constant does not. 

 

The Schrödinger Equation: the energy levels 
Whenever we solve a quantum mechanical problem, there are two important things at 

which we must look: the energy levels and the wavefunctions.  To chemists, the energy levels are 

the most important part, as the energy levels govern the chemistry the system can do.  To a 

physicist, it is the wavefunctions that pare important as they contain all of the information about 

the physical nature of the system. 

The energy levels can be derived using the normalized wavefunctions and the 

Schrodinger equation. 
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Comparison (or solving for E) yields the following 
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2

222

2ma

n
E


=  

 

which looks similar to, but not exactly like the result re produced using the de Broglie 

relationship.  In fact, it is the identical result!  Making the substitution
2

h= , it is easy to 

show that 

 

2

22

8ma

hn
E =  

 

These energy levels depend on n2, and so doubling the quantum number n quadruples the energy.  

Another way of saying this is that the energy level spacings (the difference in energy between 

two successive levels) increase with increasing n or energy. 

 It is also interesting to note that the energy levels are given by a real (non-imaginary) 

expression.  This is to be expected since the energy is the eigenvalue of a Hermitian operator, the 

Hamiltonian, and thus must be a real value. 

 

Properties of the Wavefunctions 
The wavefunctions for the one-dimensional particle in a box problem are given by 

 









=

a

xn

a
xn


 sin

2
)(  

 

These wavefunctions have many important properties. 

 

Orthogonality 
Similar to the relationship of Hermitian operators having real eigenvalues, the 

eigenfunctions of Hermitian operators must be orthogonal.  Our wavefunctions are actually an 

infinite set of function, any pair of which must cause the inner product integral to vanish.  

Mathematically, this looks like 

 

 =
a

mn mndxxx
0

0)()(   

 

This relationship is easy to verify.  To do so, we will make use of the following result taken from 

a standard table of integrals. 

 

( ) 
( )

( ) 
( )









 

+

+
−

−

−
= 2

sin

2

sin
)sin()sin(

xx
dxxx  
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Noting that 
a

n
 =  and 

a

m
 = , substitution into the above relationship yields 

 

( ) ( )

( )  ( ) 


















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






+

+
−









−

−
=



























+









+

−









−









−

=

00

)(2

sin

)(2
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)(2
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)(2
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)()(

0

0

mn
a

mn

mn
a

mn

mn
a

xmn
a

mn
a
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a

dxxx

a

a

mn



















 

 

And since n and m are integer, n-m and n+m must also be integers. And the sine of an integral 

multiple of  is always zero, it is easy to show that this function vanishes for any n ≠ m. 

 

Normalization 
When n = m the integral becomes 

 

  dx
a

xn

a
dxx

aa

n  







=

0

2

0

2
sin

2
)(


  

 

which can be evaluated using the result from a table of integrals 

 

( )





4

)2sin(

2
sin 2 xx

dxx −=  

 

So making the substitution 
a

n
 =  

 

( )

1

000
2

2

4

2
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2

2
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2

0

0

2

=









+−−=


























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








a

a

a
n

a
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x

a
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a
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a
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a




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https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Particle in a Box © 2023 Patrick E. Fleming 
– Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

48 

 

This result shouldn’t be surprising since the value A = 
a

2
 was chosen to ensure the result!  

Specifically, it was chosen so as to normalize the wave functions. 

 

Example: Show that the wavefunction 

 

Ψ(𝑥) = √
30

𝑎5
∙ 𝑥(𝑎 − 𝑥) 

 

is normalized for a particle in a box of length a. 

 

Solution: The wavefunction is normalized if 

 

∫ Ψ(𝑥)Ψ(𝑥) 𝑑𝑥
𝑎

0

= 1 

 

This can be demonstrated by plugging the wavefunction into the relationship and testing to see if 

it is true: 

 

∫ √
30

𝑎5
∙ 𝑥(𝑎 − 𝑥)√

30

𝑎5
∙ 𝑥(𝑎 − 𝑥) 𝑑𝑥

𝑎

0

=
30

𝑎5
∫ 𝑥2(𝑎2 − 2𝑎𝑥 + 𝑥2) 𝑑𝑥

𝑎

0

 

 

=
30

𝑎5
∫ (𝑎2𝑥2 − 2𝑎𝑥3 + 𝑥4) 𝑑𝑥

𝑎

0

 

=
30

𝑎5
[
𝑎2𝑥3

3
−

2𝑎𝑥4

4
+

𝑥5

5
]

0

𝑎

 

=
30

𝑎5
(

𝑎5

3
−

𝑎5

2
+

𝑎5

5
− 0 + 0 − 0) 

=
30

𝑎5
(

10𝑎5

30
−

15𝑎5

30
+

6𝑎5

30
) 

=
30

𝑎5
(

𝑎5

30
) 

= 1 

 

Therefore the wavefunction is normalized! 

 

 

The Tools of Quantum Mechanics 
 Quantum mechanics is a model that can predict many properties of systems. The 

prediction of these properties can be made by examining the results of operations on the 
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wavefunctions describing systems. In order to develop a quantum mechanical “toolbox”, we 

utilize the results of the Particle in a Box model.  

 

Expectation Values 
The fourth postulate of quantum mechanics gives a recipe for calculating the expectation 

value of a particular measurement.  The expectation value is a prediction of the average value 

measured based on an infinite number of measurements of the property.   

 

The Expectation value of Energy <E> 
One of the most useful properties to know for a system is its energy.  As chemists, the 

energy is what is most useful to understand for atoms and molecules as all of the 

thermodynamics of the system are determined by the energies of the atoms and molecules in the 

system. 

For illustrative convenience, consider a system that is prepared such that its wavefunction 

is given by one of the eigenfunctions of the Hamiltonian. 

 









=

a

xn

a
n


 sin

2
 

 

These functions satisfy the important relationship 

 

nnn EH  =ˆ  

 

This greatly simplifies the calculation of the expectation value!  To get the expectation value of 

E, we need simply the following expression: 

 

=  dHE nn
ˆ*  

 

Making the substitution from above yields: 

 

n

nnn

nnn

nn

E

dE

dE

dHE

=

=

=

=













*

*

* ˆ

 

 

In fact it is easy to prove that for a system whose wavefunction is an eigenfunction of any 

operator, the expectation value for the property corresponding to that operator is the eigenvalue 

for the given operator operating on the wavefunction.  The proof for this is almost trivial! 

 

Proof: For a system prepared in a state such that its wavefunction is given by , and  satisfies 
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the relationship  

 

 aA =ˆ  

 

The expectation value for the property associated with operator Â will be the eigenvalue a. 

 

a

da

da

dAa

=

=

=

=













*

*

* ˆ

 

 

since the wavefunction  is normalized. 

 

 

 

The Expectation value of position <x> 
To illustrate the concept, let’s calculate <x> or the expectation value of position for a 

particle in a box that is in the nth eigenstate 

. 













=

=

a

a

nn

dx
a

xn
x

a

dxxxxx

0

2

0
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2

)()(





 

 

Again, it helps to find the result for the integral in a table of integrals. 
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2
2

8
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4
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4
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







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Substitution yields 
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2

8

1
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8

1
0
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2
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4
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4

2
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2
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a
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n
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a
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n
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



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



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










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















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This result is interesting for two reasons.  First off, a/2 is the middle of the box.  So the 

result implies that we might find the particle on the left side of the box half the time and the right 

side of the box the other half.  Averaging all of the results yields a mean value of the middle of 

the box.  Secondly, the result is independent of the quantum number n – which means that we get 

the same result irrespective of the quantum state in which the system is.  This is a remarkable 

result, really, (well, not really, but it is fun to claim it is) since it means that for the n = 2 

eigenstate, which has a node at the center of the box, meaning we will never measure the particle 

to be there, still has an expectation value of position centered in the box.  This should really drive 

home the idea that an expectation value is an average.  We need never measure the particle to be 

at the position indicated by the expectation value.  The average of the measured positions must, 

instead, be at the position indicated by the expectation value. 

 

The Expectation Value of Momentum <p> 
It is also easy to calculate the expectation value for momentum, <p>.  In fact, it is almost 

trivially easy!  Based on the fourth postulate, <p> is found from the expression 

 





−=

=

a

o

a

o

dx
dx

d
i

dxpp







ˆ

 

 

At this point it is convenient to make a substitution.  If we let =u  then dx
dx

d
du


= .  Now the 

problem can be restated in terms of u.  But since we have changed from x to u, we must change 

the limits of integration to the values of u at the endpoints.  As it turns out, (0) and (a) are 

both 0! 

 

0

2

0

0

2

0

0

=









−=

−= 

u
i

duuip





 

 

Wow! The expectation value of momentum is zero!  What makes this so remarkable is that the 

particle is always moving since it has a non-zero kinetic energy. (How can this be?)  Keeping in 

mind that the expectation value is the average of a theoretical infinite number of measurements, 

and that momentum is a vector quantity it is easy to see why the average is zero.  Half of the 

time, the momentum is measured in the positive x direction and the other half in the negative x 

direction.  These cancel one another and the average result is zero. 
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Variance 
Quantum mechanics provides enough information to also calculate the variance of a 

theoretical infinite set of measurements.  Based on normal statistics, the variance of any value be 

calculated from 

 
222 aaa −=  

 

That result does not come from quantum mechanics, by the way.  Quantum mechanics just tells 

us how to calculate the expectation values.  The above expression for variance can be applied to 

any set of measurements of any property on any system. 

 So, to calculate x
2 and p

2 it is simply necessary to know <x>, <x2>, <p> and <p2>.  

Two of those quantities we already know from the previous sections. 

 

The variance in x (𝝈𝒙
𝟐) 

 

 To calculate <x2>, we set up the usual expression. 

 













=

=

a

a

dx
a

xn
x

a

dxxx

0

22

0

22

sin
2 



 

 

From a table of integrals, it can be found that 

 

 −







−−=

23

23
22

4

)2cos(
)2sin(

8

1

46
)(sin









xx
x

xx
dxxx  

 

Letting 
a

n
 =  and noting that cos(2nx) = 1 and sin(2nx) = 0 for any value of n, we see that 

〈𝑥2〉 =
2

𝑎
[
𝑥3

6
− (

𝑎𝑥2

4𝑛𝜋
−

𝑎3

8𝑛3𝜋3
) sin (

2𝑛𝜋𝑥

𝑎
) −

𝑎2 𝑥 cos (
2𝑛𝜋𝑥

𝑎 )

4𝑛2𝜋2
]

0

𝑎

 

 

=
2

𝑎
(

𝑎3

6
− 0 −

𝑎3

4𝑛2𝜋2
− 0 + 0 + 0) 

 

=
𝑎2

3
−

𝑎2

2𝑛2𝜋2
 

 

Notice that this result has units of length squared (due to the a2 dependence) which is to be 

expected for <x2>. 
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 Based on these results, it is easy to calculate the variance, and thus the standard deviation 

of the theoretical infinite set of measurements of position. 
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
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
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



−=

−=

 

 

The variance in p (𝝈𝒑
𝟐) 

 

 The relationship between energy and momentum simplifies the calculation of <p2> 

greatly.  Recall that 

 

m

p
T

2

2

=  

 

And since all of the energy in this system is kinetic energy, it follows that 

 

Hmp 22 =  

 

Further, <H> (or <E>) is simply the energy expression since the wavefunctions are 

eigenfunctions of the Hamiltonian!  ( nnn EH  =ˆ .) 

 

n

a

nnn

a

nnn

a

nn

E

dxE

dxE

dxHH

=

=

=

=







0

0

0

ˆ







 

 

Basically, this means that the expectation value for energy for a system in an eigenstate is always 

given by the eigenvalue of the Hamiltonian.  In a later section we’ll discuss the expectation value 

of energy when the system is not in an eigenstate.   

Another important aspect of the above relationship is how the integral simply went away.  

It didn’t, really.  It’s just that the wavefunctions are normalized, so the integral is unity.  Recall 

that for orthonormalized wavefunctions  
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ijji d  =
*  

 

which is a property of which we will make great use throughout our development of quantum 

theory. 

So from the result for the expectation value for energy, it follows that 

 

2

22

2

22

2

4

8
2

2

a

hn

ma

hn
m

mEp

=









=

=

 

 

 

Note that the variance of the position measurement decreases with increasing n. 

For momentum, the variance is given by 

 

( )

2

22

2

2

22

222

4

0
4

a

hn

a

hn

ppp

=

−







=

−=

 

 

The variance of momentum measurements increases with increasing n! 

We shall place these results on hold for now, and revisit them when we look at the 

Heisenberg Uncertainty Principle.  But in order to make sense of that rather important 

consequence of quantum theory, we must first examine commutators and the relationship 

between pairs of operators as this will have a profound impact on what can be known (or 

measured) by their associated physical observables. 

 

The Heisenberg Uncertainty Principle 
 One of the more interesting (and controversial!) consequences of the quantum theory can 

be seen in the Heisenberg Uncertainty Principle. Before examining the Heisenberg Uncertainty 

principle, it is necessary to examine the relationship that can exist between a pair of quantum 

mechanical operators.  In order to do this, we define an operator for operators, called the 

commutator. 

 

The Commutator 
For a pair of operators 𝐴̂ and  𝐵̂, the commutator [𝐴̂, 𝐵̂] is defined as follows 
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[𝐴̂, 𝐵̂]𝑓(𝑥) = 𝐴̂(𝐵̂𝑓(𝑥))  − 𝐵̂(𝐴̂𝑓(𝑥))  
 

If the end result of the commutator operating on f(x) is zero, then the two operations are said to 

commute.  This means that for the particular pair of operations, it does not matter which order 

they on the function – the same result is obtained either way. 

 

Relationships for Commutators 
There are a number of important mathematical relationships for commutators.  First, 

every operator commutes with itself, and with any power of itself. 

 

[Â, Â] = 0 

[Â, Ân] = 0 

 

Second, given the definition of the commutator relationship, it should be fairly obvious that  

 

[Â, B̂ ] = -[ B̂ , Â] 

 

Also, there is a linearity relationship for commutators (of linear operators). 

 

[kÂ, B̂ ] = k[Â, B̂ ] 

 

Proof: Show that two operators have a common set of eigenfunctions, the operators must 

commute. 

 

Solution: Consider operators Â  and B̂ that have the same set of eigenfunctions n such that 

 

nnn aA  =ˆ  and nnn bB  =ˆ  

 

For any arbitrary function  that can be expressed as a linear combination of n 

 

=
n

nnc   

 

the commutator of Â  and B̂ operating on  will give the following result. 

 

   









−








=

=





n

nn

n

nn

n

nn

cABcBA

cBABA





ˆˆˆˆ

ˆ,ˆˆ,ˆ

 

 

And since Â  and B̂ are linear (as all quantum mechanical operators must be) 
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And so it is clear that the operators Â  and B̂  must commute. 

 

 

When Operators do not Commute 
An example of operators that do not commute are x̂  and p̂ .  The commutator of these two 

operators is evaluated below, using a well-behaved function f. 
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The second term requires the product rule to evaluate.  Recall that 

 

d(uv) = vdu + udv 

 

And so the above expression can be simplified by noting that 
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So the final result of the operation is to multiply the function by i .  Another way to state this is 

to note 

 

  ipx =ˆ,ˆ  

 

The Heisenberg Uncertainty Principle 
Among the many contributions that Werner Heisenberg made to the development of 

quantum theory, one of the most important was the discovery of the uncertainty principle.  

Heisenberg’s observation was based on the prediction of interference of electron beams that was 

predicted by de Broglie.  The uncertainty principle states that for the observables corresponding 

to a pair of operators Â  and B̂ , the following result must hold 
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The most popularly taught statement of the uncertainty principle is based on the 

uncertainty product for position and momentum. 
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This result is easy to derive from the above expression. 
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As we saw in a previous section, we have a means of evaluating x and p to verify this 

relationship for a given state of a particle in a box.  (This evaluation is left as an exercise.) 
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Superposition and Completeness 
As stated previously, a system need not be in a state that is described by a single 

eigenfunction of the Hamiltonian.  A system can be prepared such that any well-behaved, single-

valued, smooth function that vanishes at endpoints.  When the wavefunction is not an 

eigenfunction of the Hamiltonian, the Superposition Principle can be used to greatly simplify 

how we work with the wave function. This is true because the so-called normal solutions 

(𝜓𝑛(𝑥)) to the Schrödinger Equation 

 

𝐻̂𝜓𝑛(𝑥) = 𝐸𝑛𝜓𝑛(𝑥) 

 

using the language of linear algebra, span the space of well-behaved functions that can describe 

the physics of the particle. That means that any arbitrary function that is 1) continuous, and 2) 

obeys the boundary conditions, can be expressed as a linear combination of these normal 

solutions: 

 

Φ(𝑥) = ∑ 𝑐𝑛 𝜓𝑛(𝑥)

𝑛

 

 

where the coefficients cn are calculated using the Fourier Transform shown below. 

 

𝑐𝑛 = ∫ Φ(𝑥) 𝜓𝑛(𝑥) 𝑑𝑥
∞

−∞

 

 

Superposition 
This description also has a number of other important ramifications.  Consider a particle 

in a box system prepared so that the wavefunction is given by 
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where  
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The first question one might ask is, “Is the wavefunction (x) normalized?” Well, let’s see! 
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(Notice how the property  = ijji d   has been used to simplify the problem, by making the 

integral of the cross product in the middle vanish, and the integrals of the first and third terms go 

to unity.)  So the wavefunction is normalized.  Now, let’s evaluate the expectation value of 

energy <E>. 
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So the expectation value is given by the average of E1 and E2.  This result is only possible if half 

of the time the energy is measured, the observed value is E1 and the other half E2.  In other 

words, the probability of measuring E1 is ½ and that of E2 is ½.  It is also important to note that 

these probabilities are given by the Fourier coefficients of  

 

c1 = 
2

1 , c2 = 
2

1  and cn = 0 for all other n 

 

It can be concluded that the probability of measuring En is given by |cn
2|. 
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2)( nn cEP =  

 

Completeness 
Imagine the following scenario.  A quantum mechanical particle of mass m in a one-

dimensional box of length a is prepared such that its wavefunction is given by 1(x).  

Instantaneously, the length of the box increases to 2a.  The particle is no longer in an eigenstate 

of the new system.  Rather, its wavefunction will look like the function depicted below in the 

MatchCad worksheet. 

The function can be described as a superposition of wavefunctions that are eigenfunctions 

of the Hamiltonian that reflects the new length of the box.  A MathCad worksheet that reflects 

this expansion is given on the next page.  The larger the value of m selected, the better the 

representation of the wavefunction. 
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 The above problem is analogous to what happens when an atom undergoes radioactive 

decay by something such as -particle emission from the nucleus.  In that case, the nuclear 

charge suddenly changes (changing the potential energy function and thus the Hamiltonian.)  The 

change happens effectively instantaneously compared to the time required for the atom to react.  

The atom suddenly finds itself in a non-eigenstate, the nature of which will govern how the atom 

changes in time to respond to the nuclear decay.  The superposition of eigenfunctions of the new 

Hamiltonian will give a description of the atom immediately following the decay, and the overall 
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wavefunction will evolve in time based on how it is predicted to do so according to the fifth 

postulate. 

 The superposition theorem allows for a complete description of a wavefunction according 

to the needs to the quantum theory – even if the wavefunction being described by a superposition 

of states is not an eigenfunction of the Hamiltonian!  (Now how much would you pay?) 

 

Problems in Multiple Dimensions 
As luck would have it, not all quantum mechanical problems are expressible in terms of a 

single dimension.  In fact, most problems will require multiple “dimensions” as they will involve 

not only electronic state descriptions, but also vibrational descriptions and rotational descriptions 

as well.  In this section, we will discuss how variables are separated in the multidimensional 

problems, using a particle in a three-dimensional box as an example. 

 

The Particle in a Rectangular Box 
Consider a particle of mass m constrained to a three dimensional rectangular box with 

sides of lengths a, b and c in the x, y and z directions respectively.  For this problem, the 

Hamiltonian will look as follows 
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One important thing to notice is that this Hamiltonian can be written as a sum of three separate 

operators, each affecting only a single variable. 
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When the Hamiltonian takes a form like this, it will also be possible to express the 

eigenfunctions as a product of functions.  Let’s give it a try. 

 The time independent Schrödinger equation looks as follows 
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To simplify things, let’s gather variables and make the substitution 
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To proceed, we make an assumption that the wavefunction can be expressed as a product of 

functions. 
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The wave equation then becomes 
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Dividing both sides by X(x)Y(y)Z(z) yields 
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Since each of these terms is in a different variable, the only way the equation can be true is if 

each term on the left is equal to a constant.  These constants are chosen in a convenient way so as 

to make the solution of the problem simple.  So again, to proceed, we make a substitution. 
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where 

 
2222 kkkk zyx −=−−−  

 

These substitutions allow us to separate the problem into three problems in single variables.  

Further, we know what the solutions to these equations are! 
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The total wavefunction, therefore is 
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And the energy levels can be expressed as 
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The key element to notice here is that the wavefunctions are expressed as a product and the 

eigenfunction as a sum.  This is a common pattern as it always happens when the operator can be 

expressed as a sum as was the case for this operator. 

 This pattern arises often in chemistry, where, for example, the total wavefunction of a 

molecule might be described as the product of wavefunctions describing the electronic state, the 

vibrational state and the rotational state. 

 

rotvibelectot =  

 

In the limit that this is a good description, the energy of the molecule can be expressed as a sum 

of energies. 

 

Etot = Eelec + Evib + Erot 

 

Degeneracy 
Let’s now consider the case where the particle is confined to a cubic space – a rectangular 

solid where all edges have the same length.  If that length is a, the wavefunction becomes 
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The energy levels are given by 

 

( )
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2
222
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h
nnnE zyx ++=  

 

This result leads to an important possibility.  Specifically, several eigenstates of the system can 

have the same energy.  Consider the set of quantum numbers and energies shown in the 

following table.  

 Notice that several energies can be generated by a number of combinations of quantum 

numbers.  The degeneracy is indicated by the number of quantum states that yield the same 

energy.  There are many examples in quantum mechanics where several eigenstates yield the 

same energy.  This can have important consequences on the nature of the system being 

described.  This is perhaps the simplest system in which this phenomenon is observed.  (Well, a 

particle in a 2-D box is simpler.) 

 

Level nx ny nz E/(h2/8ma2) Degeneracy 

1 1 1 1 3 1 

2 1 1 2 6 

3 3 1 2 1 6 

4 2 1 1 6 

5 1 2 2 9 

3 6 2 1 2 9 

7 2 2 1 9 

8 1 1 3 11 

3 9 1 3 1 11 

10 3 1 1 11 

11 2 2 2 12 1 

12 1 2 3 14 

6 

13 2 3 1 14 

14 3 2 1 14 

15 1 3 2 14 

16 3 2 1 14 

17 2 1 3 14 

 

Linear Combinations of Degenerate Wavefunctions 
Oftentimes, it is convenient to describe systems using linear combinations of 

wavefunctions.  An example of this is the creation of molecular orbitals as linear combinations of 

atomic orbitals.  Another is the construction of hybrid orbitals such as the sp3 hybrid set that is 

often used to describe the bonding in methane or other hydrocarbons. 

These linear combinations have important properties.  In the case that the basis 

wavefunctions are degenerate eigenfunctions of the same operator (say, the Hamiltonian operator 

for instance) the linear combinations will also be eigenfunctions of that operator.  However, this 
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will not generally be the case for linear combinations of non-degenerate eigenfunctions.  The 

proof of this is fairly straight forward. 

 

Proof: Show that any linear combination of two functions that are eigenfunctions of the same 

operator, and have the same eigenvalues is also an eigenfunction of the operator. 

 

Solution: Consider two functions f and g that are eigenfunctions of the operator Â. 

Âf = af  and  Âg = ag 

Any linear combination of the functions f and g will also be an eigenfunction of the operator Â. 
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The Particle on a Ring Problem 
 Consider a quantum mechanical particle of mass m constrained to a circular path of 

radius a.  In Cartesian coordinates, we can write the potential energy function for this system as 
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However, it is much more convenient to work in coordinates that reflect the symmetry of 

the problem.  In plane polar coordinates, the potential energy function is defined as 
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And since the Laplacian operator is given by 
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we can write the time-independent Schrödinger equation as 
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As usual, we proceed by separating variables.  Let’s let   ( , ) ( ) ( )r R r=  .  We now get 
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Now we can divide both sides by the function R(r) and simply get rid of it.  In this 

problem the only thing we need to know about the r is that is it a constant (r = a.) 

So after a trivial rearrangement, we see 
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This is starting to look more like something we can manage to solve by inspection!  Let’s 

make a substitution.  Let 
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We’ll evaluate ml later. But now it is easy to show that  
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is a solution to the eigenvalue, eigenfunction problem.  Let’s try! 
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So the eigenfunctions are given by ( ) = Ae iml  and the eigenvalues are given by -ml
2. 

To proceed, we will employ a cyclical boundary condition.  Since all wavefunctions must 

be single valued, we see that 

 
 ( ) ( )  = + 2  

 

So . . . 

 

Ae Ae

Ae e

im im

im i m

l l
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 

=

=

+( )2

2
 

 

Or dividing both sides by Ae iml , we see 
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1 2= e i ml  
 

This is going to quantize the possible values which ml can take.  And since the Euler 

relation tells us that 

 

e i = −1  
 

we see that 

 

1 1 2= −( ) ml  

 

which can only be true if ml is an integer.  As it turns out, it doesn’t matter if ml is positive or 

negative.  It just has to be an integer. 

 
ml =  0 1 2, , ...  

 

As promised, this quantizes the energies possible for the system. 

 

m

I
El

2 2

2


=  

 

where the moment of inertia I is given by the mass times the radius squared. 

 

I mr= 2  
 

Finally, we can obtain the value of the normalization constant A to normalize the wavefunctions. 

 

1 2

0

2

= A e e dim iml l 
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  

 

And we see that 
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1 2
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So, in summary, the wavefunctions are given by 

 

 


( , ) , , ,...

/

r e mim

l
l=









 =  

1

2
0 1 2

1 2

 

 

And the energies are given by 
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The Free Electron Model 
Consider a long molecule that is a conjugated polyene.  Kuhn (Kuhn, 1949) has 

suggested a model for the electrons involved in this -bond system in which an electron is said to 

have a finite potential energy when it is “on” the molecule and an infinite potential energy when 

it is “off” the molecule.  The model (known as the free electron model) is very much analogous 

to the particle in a box problem as we have presented it in class. 

Let’s consider a conjugated polyene molecule in which there are twelve atoms in the 

conjugated polyene chain.  Each atom contributes one  electron and each bond contributes 

0.139 nm (the C=C bond length in benzene.)  We can consider each energy level in the system as 

one orbital.  As in all other cases involving electrons, each orbital can contain two electrons.  

Using the model, we can predict the wavelength of light the molecule will absorb to excite one 

electron from the HOMO to the LUMO (highest occupied molecular orbital to the lowest 

unoccupied molecular orbital.) 

First, there are 11 bonds in the chain.  Since each bond contributes 0.139 nm, the “box” is 

1.529 nm long.  The energy levels of the molecular orbitals are then given by: 

 

E
n h

ma
n =

2 2

28
 

 

where n = 1, 2, 3 . . ., h is Plank’s constant (h = 6.63x10-34 Js), m is the mass of an electron (me = 

9.11x10-31 kg) and a is the length of the box (a = 1.529x10-9m.) 

The energy levels will be filled with the 12  electrons packing two electrons per orbital.  

Thus, the HOMO will be the state with n = 6.  The LUMO will be the state with n = 7 - the next 

state up in energy.  The difference in energy is what we want in order to predict the wavelength 

of light the molecule will absorb. 
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So the energy of excitation will be 3.354x10-19 J.  This corresponds to an absorption 

wavelength of 593 nm (which is in the visible region of the spectrum.)  How would the 

absorption wavelength change for more or fewer atoms in the conjugated polyene chain?  The 

solution is left as an exercise. 
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Entanglement and Schrodinger’s Cat 
There are many elements of the quantum theory that produce bizarre results (at least 

compared to our intuition as residents in a classical physics world.  As it turns out, some of the 

early pioneers of a quantum theory (such as Albert Einstein and Erin Schrödinger) found these 

elements of strangeness too much to handle.  Both expended a great deal of energy to eliminate 

quantum mechanics as an accepted theory that would shape modern science.  As it turns out, all 

of the bizarreness predicted by quantum mechanics has withstood the tests of experimentation, 

despite the concerns and well-thought objections of these two scientific giants. 

 

Entanglement and Spooky Action at a Distance 
One of Einstein’s objections came in the form of what he named “spooky action at a 

distance.”  To understand this phenomenon, consider the decomposition of a p-meson into an 

electron and a positron.  Since the original particle has zero spin, in order to conserve angular 

momentum, must be “spinning” in opposite directions. In other words, one has ms = +½ and the 

other has ms = -½. 

 

 
 

The wavefunction that describes this system prior to the measurement of the spin of 

either particle is given by 

 

( )−+−+ −= 
2

1
spin

 

 

which allows for the possibility that either particle is spin up or spin down to be equally lightly.  

But the spins of the two particles are intimately coupled to one another.  If the electron (-) is 

spin up () then the positron (+) must be spin down () (and vice versa.)  This property is an 

example of entanglement where the properties of one particle are entangled with those of the 

other through the wavefunction that describes the entire system. 

 Now suppose that the spin of the electron is measured and determined, the spin of the 

other is determined at the same time.  As such, the measurement of the property of one particle 

causes the wavefunction of the other particle to change instantaneously.  This is what Einstein 

referred to as “spooky action at a distance.”  This action would require information to be 

transferred across space at a speed faster than the speed of light, violating Einstein’s theory of 

relativity. 

 This paradox has been studied extensively and remains a topic of research interest.  It 

should be noted that whenever these sort of issues crop up, it is quantum mechanics that seems to 

prevail over relativity.  (Sorry Einstein!) 
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Schrödinger’s Cat 
Erwin Schrödinger’s involvement in trying to dissuade the scientific community from 

embracing quantum theory is particularly peculiar, as it was the development of the wave 

equation that is still used today that won him the Nobel Prize in 1933.  None the less, 

Schrödinger found himself quite troubled by the conclusions of the quantum theory.  Toward that 

end, in 1935, he published a paper in which he described a thought experiment that had to give 

the scientific world pause where quantum theory was concerned. 

The problem was stated thusly.  Imagine a box inside of which no observation could be 

made unless the box was opened.  Inside, was placed a cat, a bottle of poison (prussic acid) and a 

radioactive atom.  If the atom decays, a hammer will drop on the poison, killing the cat.  The 

experiment was to wait one half-life of the atom.  At that point, the wavefunction for the atom 

was given by 

 

undecayeddecayedatom 
2

1

2

1
+=  

 

This implies that it is equally likely that the atom has decayed as not decayed.  And since the life 

of the cat was tied to the state of the atom, it is equally likely that the cat is dead or alive.  

Therefore, the “wavefunction” for the cat would be given by 

 

alivedeadcat 
2

1

2

1
+=  

 

This implies that the cat is neither dead nor alive, but both with equal probability!  And even for 

the most lethargic of cats, it is very clear that animal is either alive or not.  The notion that it is 

both is simply preposterous!  This is the conclusion of which Schrödinger hoped to convince the 

scientific world.  Alas, experimentation has failed to uphold Schrödinger’s notion that quantum 

mechanics provides an incorrect description of the atom. 

 There have been numerous treatises on these topics and beyond.  (The strangeness of 

quantum mechanics has been a very thought provoking topic indeed!)  After completing a course 

in quantum mechanics (such as this one) a student should be well prepared to explore some of 

these very intriguing and perplexing predictions. 
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Problems 
 

1. Consider the functions f(x) = A(1-x2) and g(x) = 3x3-x. 

a. Find a value for A such that f(x) is normalized on the interval -1 ≤ x ≤ 1. 

b. Are the functions f(x) and g(x) orthogonal over the interval -1 ≤ x ≤ 1? 

 

2. Consider each of the following functions and the associated intervals.  Indicate whether 

or not the given function is suitable as a wavefunction over the given interval. 

a. ex  0 ≤ x ≤ ∞ 

b. e-x  0 ≤ x ≤ ∞ 

c. 1/x  -∞ ≤ x ≤ ∞ 

d. ei  0 ≤ x ≤ 2 

e. x(1-x)  0 ≤ x ≤ 1 

 

3. Consider the following operators.  Determine whether or not they are Hermitian. 

a. d/dx 

b. i d/dx 

c. d2/dx2 

d. i d2/dx2 

 

4. Consider an operator Â and associated set of eigenfunctions n that satisfies 

 

Ân = ann 

 

Show that if the operator is Hermitian that the eigenvalues an must be real-valued. 

 

5. Consider the data in the table.   

 

a. Calculate <x> and <x2>. 

b. Calculate x
2 for the data set. 

c. Does x
2 = <x2> - <x>2?  If not, what is the difference? 

 

6. Consider a particle of mass m in a rectangular solid box with edge lengths 

given by a = a, b = 2a, c = 2a.  Find the degeneracies of the first 10 energy 

levels for the system. 

 

i x 

1 2.3 

2 6.4 

3 4.2 

4 3.5 

5 4.9 
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7. Consider a particle of mass m that is in a one-dimensional box of length a.  The system is 

prepared so that the wavefunction is given by (x) = Ax(a-x). 

a. Find a value of A that normalizes the wavefunction.  

b. Find the expectation values for x and x2( <x> and <x2>.) 

c. Find the expectation values for p and p2( <p> and <p2>.) 

d. Given that the variance for a measurement is given by a
2 = <a2> - <a>2 calculate 

the variances x
2 and p

2. 

e. Find the value of xp. Does it exceed ħ/2? 

 

8. Consider a particle of mass m in a box of length a.  The system is prepared such that the 

wavefunction is given by (x) = Ax2(a-x). 

a. Find a value of A that normalizes the wavefunction. 

b. What are the units on the wavefunction? 

c. Find <x>. 

d. Is <x> = a/2? Why or why not? 

 

9. Consider the following pairs of operators and determine whether or not the operators 

commute. 

a. d/dx, d2/dx2 

b. x,  d2/dx2 

c. x, ∫ 𝑑𝑥 

 

10. Consider a particle of mass m in a box of length a for which the wavefunction is given by  

 

(x) = (2)1/2/3 1(x) – (7)1/2/3 3(x) 

 

where n(x) = (2/a)1/2 sin(nx/a). 

a. Show that the wavefunction (x) is normalized. 

b. Graph the wavefunction (x). 

c. What is the expectation value for energy <E> for the system? 

d. What is the most likely energy to be measured for the system? 

 

11. Consider benzene (C6H6) as modeled using the free-electron model. 

a. Using a C-C bond length of rcc = 0.139 nm, calculate the circumference of the 

ring and its radius. 

b. Based on the model, what are the degeneracies of the four lowest energy levels? 

c. Placing two electrons per particle-on-a-ring “orbital”, calculate the energy gap 

(and corresponding wavelength of light driving a transition) between the HOMO 

and the LUMO based on this model. 

d. How does the value you found in part c compare to the observed band-origin of 

the A1g → B1u transition of benzene ( = 215 nm)? 
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