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Chapter 4: The Harmonic Oscillator and 
Vibrational Spectroscopy 
 

One of the four important problems in quantum mechanics that can be solved analytically 

is that of the Harmonic Oscillator.  This problem is very important to chemists as it provides the 

model for vibrating molecules and explains what we see in infrared and Raman spectra of 

molecules.  In this chapter we will develop the problem, discuss the limitations of the simple 

problem and how we deal with them, and the applications of the conclusions to molecular 

spectroscopy and the measurement of molecular properties. 

 

The Potential Energy Surface for a Diatomic Molecule 
 

Consider the potential energy surface for a diatomic molecule.  The functional form can 

be seen in the following graph. 

 

 
 

In the surface, it is easy to see the “hard wall” on the left side, where the repulsive force between 

atoms is strong (which is why the curve is so steep) and the “soft wall” on the right side of the 

well, where the restorative force of the chemical bond exists.  The bond length at the potential 

minimum is indicated by re, the equilibrium bond length. 

 The function can be expressed as a Taylor series expansion.  For convenience, we can 

define x = (r-re).  We will also define the zero of energy to be the bottom of the potential well.  

Given these definitions and the Taylor expansion about x = 0 which can be expressed by  
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We can evaluate these terms qualitatively based on the above diagram and the definitions 

provided above.  The first two terms of the expansion are zero, by the choice of the zero of 
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energy and because the derivative is zero at the potential minimum.  The third and fourth terms 

are simplified by making the following substitutions 
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The new function can be rewritten as 
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And if the series is truncated at the x2 term, it yields the familiar Harmonic Oscillator potential 

energy function that corresponds to a Hook’s Law oscillator. 
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Transforming to Center of Mass Coordinates 
 

Consider a diatomic molecule that can be modeled as two masses (m1 and m2) attached 

by a spring that has a force constant k.  The location of atom 1 is z1 and that of atom 2 is z2.  The 

equilibrium length of the spring is re. 

 

 
 

The force acting on either atom can be expressed in two ways.   

 

F = ma  and   F=-kx 

 

where m is either m1 or m2 and x is the displacement from the equilibrium distance, given by 

 

x = (z2 - z1 - re) 
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The force acting on atom 1 is in the opposite direction of that acting on atom 2.  This suggests 

two equations that will govern the motion of atom 1 and atom 2 respectively. 
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Dividing both equations by the masses yields the following pair of equations. 
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Add these two equations yields 
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 has important significance, as it is the reciprocal of the reduced mass. 
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The reduced mass is introduced as a consequence of moving to center of mass coordinates.  It is 

the mass of a single object that would move with the same frequency of oscillation were it 

attached to a fixed point by a spring of the same force constant.  It is important to note that  has 

units of mass.  Also, in the limit that m1 and m2 have the same value (let’s call it m1) 
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This result makes a great deal of sense because for equal masses, the motion of the molecule will 

involve equal and opposite motions of the two atoms relative to the center of mass (which will be 

the middle of the bond.)  Thus, a single mass oscillating with the same frequency is moving 
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relative to a distance that is in the middle of the spring.  Hence, the mass will have to be half of 

the mass of one of the atoms, or the frequency would be different. 

The other important limit is when one mass is significantly larger than the other.  

Consider what happens when m1 >> m2 
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This result makes a great deal of sense because if one mass is significantly larger than the other, 

it will be the light atom that undergoes the larger motion.  In the limit that m1 = ∞, the center of 

mass is located at z1 and the heavy atom becomes a fixed point in the motion. 

 The next task is to simplify things further by introducing a mass-weighted coordinate, Z. 
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This expression gives the location of the center of mass of the molecule. The utility of this 

substitution is found in taking the difference of the two equations 
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Dividing both sides by (m1 + m2) yields 
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Finally, making the substitution for the center of mass 
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which tells us that the center of mass of the system does not move in time. 

 

Solving the Schrödinger Equation 
 

It is convenient to make the substitution that 
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This allows us to write the Hamiltonian for the system then as 
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where  is the reduced mass given by 
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k is the force constant of the bond and x is defined by 

 

x = (r - re) 

 

as previously state.  The Schrödinger equation is then given by 
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Energy Levels 
 

The boundary conditions require that the square of the wavefunction must have a finite 

area below it in order to ensure that the wavefunction is normalizable.  The only way this 

happens is if the following conditions are met 
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The resulting energy levels are the set of eigenvalues that correspond to the functions that satisfy 

the above stated boundary condition.  These energies have values given by 
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Notice how the use of the boundary conditions is what leads to the instruction of quantized 

energies.  

 

 
 

 

The resulting energy levels are evenly spaced with increasing energy.  The actual spacing is 

determined by the physical characteristics of a given molecule, namely the reduced mass and the 

force constant. 

 

Spectroscopic Constants and Force Constants 
 

Vibrational spectroscopy is often done using units of cm-1.  Energies expressed in terms 

of this unit are called term values.  The termvalue is given as the energy divided by Planck’s 

constant and the speed of light (E/hc). Standard notation uses the symbol Gv to indicate the term 

value for vibrational energy.  Gv is given by 
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where 

 

Potential Energy Function
for a Harmonic Oscillator
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The vibrational constant we can be determined experimentally for specific molecules.  Consider 

the following values for various molecules. 

 

Molecule e (cm-1) k (N/m)  (kg) 
1H35Cl 2989.74 516 1.627 x 10-27 

1H79Br 2649.67 412 1.652 x 10-27 

1H127I 2309.5 314 1.660 x 10-27 

19F19F 916.64 347 1.577 x 10-26 

16O16O 1580.93 1177 1.328 x 10-26 

14N14N 2359.61 3116 1.163 x 10-26 

 

Two important points can be made from this data.  First, a typical force constant for a 

single bond is on the order of a couple hundred N/m.  Secondly, multiple bonds lead to 

significantly larger force constants.  This is not too surprising since the force constant gives a 

measure of the stiffness of the bond. 

 

The Wavefunctions 
 

The wavefunctions for the harmonic oscillator are determined by solving the Schrödinger 

equation.  As stated before, the only wavefunctions that obey the boundary conditions have 

eigenvalues given by  
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where v = 0, 1, 2, 3, …  The wavefunctions themselves can be determined by solving the 

differential equation using a power-series solution.  In the end, we find that the resulting function 

involve a set of orthogonal polynomials known as the Hermite Polynomials.  We will discuss 

some properties of this important set of functions before discussing the wave functions 

themselves. 

 

Hermite Polynomials 
 

The Hermite polynomials are a set of orthogonal polynomials.  Like all sets of 

orthogonal polynomials, they have 1) a generator formula, 2) an orthogonality relationship and 

3) a (or several) recursion relations that relate one function in the series to others. 

The Hermite polynomials can be generated using the following function 
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Using this function, the first few Hermite polynomials can be generated. 
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1 2y 
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Further members of the set of functions can be generated using one of the important recursion 

relations. 
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Using this function, we can generate a longer list of Hermite polynomials without having to take 

so many derivatives. 
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0 1 

1 2y 
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4 16y4-48y2+12 

5 32y5-160y3+120y 

 Etc. 

 

Another important relationship between these functions is that  
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In addition to these relationships, the Hermite polynomials have an important orthogonality 

relationship. 
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The Hermite polynomials also have important symmetry properties.  Each function in the set is 

an eigenfunction of the inversion operator.  The inversion operator is a symmetry operator that 

is defined by the operation (in one dimension) 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: The Harmonic Oscillator © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

109 

 

)()(ˆ xfxfi −=  

 

Functions that are eigenfunctions of this operator can be classified as being either even function 

or odd functions. 

 

Even f(-x)=f(x) 

Odd f(-x) = -f(x) 

 

Even functions are symmetric eigenfunctions of the inversion operator and odd functions are 

antisymmetric eigenfunctions as their eigenvalues are +1 and -1 respectively.  Even and odd 

functions also have important properties when integrated over symmetric intervals. 

 

Even  =
−

aa

a

dxxfdxxf
0

)(2)(  

Odd 0)( =
−

a

a

dxxf  

 

These properties can greatly simplify integration involving these types of functions! 

 

The Harmonic Oscillator Wavefunctions 
The wavefunctions for the Harmonic Oscillator have three important parts: 1) a 

normalization constant, 2) a Hermite polynomial and 3) an exponential function that insures the 

orthogonality of the wavefunctions. 
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Expectation Values 
 

The simplicity of the wavefunctions makes the calculation of expectation values very 

simple for the harmonic oscillator problem. 

 

Position 
The expectation value of position can be determined solely based on symmetry 

arguments.  Recall that harmonic oscillator wavefunctions are either even or odd functions.  The 

symmetry of the products of even or odd functions can be summarized as follows. 

 

 even odd 

even even odd 

odd odd even 

 

It is easy to recognize this multiplication table as arising from taking the products of the 

eigenvalues of the functions with respect to the inversion operator. 

 

 1 -1 

1 1 -1 
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-1 -1 1 

 

These results will be used to demonstrate that the expectation value of position is the 

same for all of the stationary wavefunction.  Consider the integral required to calculate this 

value. 
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The wavefunction v is either an even or odd function depending only on whether v is even or 

odd.  Since the x̂  operator is itself an odd function (always), there are only two possibilities for 

the total symmetry of the integrand. 

 

v x v 
Integrand 

Symmetry 

even odd even odd 

odd odd odd odd 

 

The pattern emerges due to the fact that the product of even and odd function produces a 

resulting function according to the following symmetry multiplication table. 

 Regardless of whether the wavefunction is an even or odd function, the product 

 

v∙x∙v 

 

is always an odd function.  And as we have seen before, the integral of an odd function over any 

symmetric interval is zero by symmetry. 

 Therefore, the expectation value of x, <x>, is always 0 for any eigenstate of the harmonic 

oscillator.  The means that <r> = re, the equilibrium bond length. 

 

Momentum 
The evaluation of the expectation value of momentum can be made following the same 

symmetry arguments.  In order to do this, one must consider the effect of taking a derivative of a 

function. 

 Consider the following even function 

 

24)( 2 −= xxf  

 

The first derivative of this function is given by 
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which is an odd function.  The derivative of this function 
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yields an even function.  The following set of properties will hold for the symmetries of 

functions and their derivatives. 
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even odd 

odd even 

 

As such, the symmetry of the integrand for the calculation of the expectation value of momentum 

 




−
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must always be an odd function, since the p̂  takes the first derivative of the wavefunction. 

 

v p∙v 
Integrand 

Symmetry 

even odd odd 

odd even odd 

 

The result is that the expectation value of momentum, <p>, must also be 0 for any eigenstate of 

the harmonic oscillator problem.  Again, this can be reasoned by noting that half of the time the 

momentum measured will be in the direction of the bond stretching, and the other half of the 

time in the direction of the bond being compressed.  On average, these two circumstances will 

cancel, yielding an average value of <p> = 0. 

Energy 
As with any eigenstate, the expectation value of energy <E> is easy to calculate.  Recall 

that the wavefunctions were determined to be eigenfunctions of the Hamiltonian. 

 

vvv EH  =ˆ  

 

As such, The expectation value of energy is trivially easy to find for a system in an eigenstate. 
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since the wavefunctions are normalized.  The expectation value of energy is always an 

eigenvalue of the Hamiltonian for a system that is in an eigenstate of the Hamiltonian. 

 

Tunneling 
 

One of the curious consequences of quantum mechanics can be seen in the form of 

tunneling.  This odd behavior becomes possible whenever the square of the wavefunction 

extends beyond a classical barrier to the motion of the particle r molecule.  In the case of the 

harmonic oscillator, this is seen as possible since the squared wavefunction extends beyond the 

classical turning points of the oscillation. 

The classical turning point is defined as the point in the motion where all energy has been 

converted from kinetic energy to potential energy.  At this point, the motion switches direction as 

potential energy is converted back into kinetic energy.  Since there is a non-zero value of the 

squared wavefunction beyond this point for all eigenstates, there is a non-zero probability of 

measuring the position of the system to lie beyond these classical turning points.  And then if 

there is a new potential well accessible if the system tunnels through the classical barrier, there is 

a non-zero probability of finding the system in that well, meaning that the system may have 

changed states completely! 

This result is another example of the bizarreness of quantum mechanics.  If one were to 

consider a classical ball that is thrown against the wall at the front of the classroom, one expects 

that the ball will return to the thrower after bouncing off the wall every time.  But for a quantum 

mechanical ball, there is a non-zero possibility of finding the ball on the other side of the wall!  If 

this were to be the case, the ball would have been said to have tunneled through the wall.   

The probability for this happening is proportional to that fraction of the area under the 

squared wavefunction curve that lies beyond the classical barrier.  This probability will be 

decreased for heavier objects as the fraction of wavefunction beyond the classical barrier will be 

smaller. 
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Strengths and Weaknesses 
 

Keeping in mind that the harmonic oscillator model is an approximate model, it should 

not come as a surprise that there are a number of shortcomings to it. 

The harmonic oscillator does not place any constraints on bond length.  At the short bond 

length side of the potential, there is nothing in the model to prevent the bond length from 

becoming zero or even negative (implying that it is possible for one atom to pass through the 

other in a molecule.  Additionally, the harmonic oscillator does not allow for molecular 

dissociation as the potential energy just keeps increasing with increasing bond length.  None the 

less, the harmonic oscillator model works quite well for small displacements from the 

equilibrium bond length. 

 

The Morse Potential 
 

One improved form of a potential energy function was provided by Phillip Morse (Morse, 

1929).  The Morse potential is given by the following function 
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1)( err

e eDrU
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where De is the dissociation energy of the molecule.  While this function still allows for negative 

bond lengths, it does allow for molecular dissociation at long bond lengths. 

 The force constant for the Morse potential is determined by evaluating the second 

derivative of the potential energy function at the potential minimum. 

 

Harmonic and Morse Potentials
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Based on the expression given above for the Morse potential, the following result is obtained. 

 
22 eDk =  

Anharmonicity 
 

A solution to the Schrödinger equation using the Morse potential produces an additional 

constant in the energy expression for vibrational energy. 
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The new constant, exe, is called an anharmonicity constant, as it accounts for deviation from 

the harmonic potential.  For a more general potential energy function, the expression for the 

vibrational term value can be expressed as a longer power series in (v+½). 

 

++++−+= 3
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For well-behaved molecules, the magnitude of the anharmonicity constants decreases with 

increasing order in (v+½).  Thus, the series can be truncated at some point and will provide an 

adequate model for the purposes of fitting experimental data. 

 

Vibrational Spectroscopy Techniques 
 

Infrared and Raman spectroscopy are two experimental methods that are commonly used 

by chemists to measure vibrational frequencies (e).  Infrared spectroscopy generally involves 

direct absorption whereas Raman spectroscopy involves scattering of light. 

 

Infrared Spectra 
 

Infrared spectroscopy is a commonly used technique in the identification of molecular 

compounds.  It is also a very convenient technique to use in determining molecular force 

constants, since the spectrum records vibrational frequencies. 

Based on the results of the harmonic oscillator problem, the selection rules for an infrared 

spectrum are determined to be 

 

1=v  
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That means that as a molecule absorbs or emits a single infrared photon (meaning the electronic 

state of the molecule does not change) the vibrational quantum number can go up or down 

(depending on absorption or emission) by one quantum.  For a typical experiment, the theory 

predicts a single band in the spectrum of a molecule, and that band will be centered at a 

frequency equal to e for the molecule. 

 A schematic diagram of a typical infrared absorption spectroscopy experiment is shown 

below.  The light is produced at the source (typically an incandescent light bulb or a glowbar), 

passes through the sample where some of the light can be absorbed, and then the monochrometer 

(which is typically either a grating or an interferometer) which is used to distinguish between the 

various frequencies of light, and finally the light is detected by a detector.  Plotting detected 

intensity as a function of frequency produces the spectrum. 

 

 
 

Determining a Force Constant 
 

Consider the experimentally determined we value for carbon monoxide (CO.)  The 

spectrum shows a strong absorption at 2143 cm-1 due to CO.  Using this value for e (it is 

actually a little off due to anharmonicity), the force constant can be determined for the molecule. 

 




k

c
e

2

1
=  

 

Using a value of 1.14 x 10-26 kg for the reduced mass of the molecule, the force constant is found 

to be 1856 N/m.  The literature value for this force constant is 1860 cm-1.  Given that this 

calculation did not treat anharmonicity, the agreement is pretty good! 

 

Progressions in Electronic Spectra 
 

Electronic transition in diatomic molecules which can be observed in the visible and 

ultraviolet regions of the spectrum can have a great deal of vibrational structure as the molecule 

is free to vibrate in both the upper and lower states.  The following figure shows vibrational 

progressions in the emission spectrum of AlBr near 2800 Å (Fleming & Mathews, 1996). 
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These progressions can be analyzed to provide dissociation energies for the electronic states 

involved in the transition. 

 If the vibrational energy function is truncated at the exe level (as predicted by the Morse 

potential) the vibrational term value will reach a maximum value at some value of v.  Any 

further vibrational excitation is predicted to lower the molecular energy.  This is actually the 

dissociation limit.  Therefore, the maximum value of v for a bound state (vmax) is the largest 

value of v for which the vibrational energy spacing is positive.  The dissociation energy of the 

molecule is then given by the sum of vibrational energy spacings from v=0 to v=vmax. 

 

Determining a Dissociation Energy 

  

To find the value of the dissociation energy, it is convenient to define the difference between 

successive vibrational terms as 

 

vvv
GGG − ++ 1

2
1  

 

Using the expression for Gv as predicted by the Morse potential, 
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This suggests that a set of values of Gv+½ vs. (v+½) should yield a straight line with a 

slope equal to -2exe and an intercept equal to e.  And vmax is determined by setting Gv+½ to 

zero and solving for v. 

 The Birge-Sponer method (Gaydon, 1946) can be used to determine the sum of 

vibrational spacings, and thus the dissociation of a molecule.  The method involves plotting 

Gv+½ vs. (v+1).  The dissociation energy is taken as the area under the curve. 

 

Vibrations of Polyatomic Molecules 
 

Nonlinear molecules have 3N-6 vibrational degrees of freedom, where N is the number of 

atoms in the molecule.  Thus, a triatomic molecule such as water has three vibrational degrees of 

freedom.  These account for the three vibrational modes of water (symmetric stretch, bend and 

antisymmetric stretch.)   

Birge Sponer Plot

0 5 10 15 20

(v+1)


G

v
+

1
/2
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Each mode will have a characteristic frequency.  If each mode is treated as a harmonic 

oscillator, the total vibrational energy is given by 

 


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+=
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i

ii vG   

 

where i is the frequency of the ith vibrational mode, and vi is the quantum number indicating the 

number of quanta of the ith mode excited. If anharmonicity is to be included, the expression 

becomes 
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where xij is he anharmonicity term that couples the vibrational modes. 

 

Group Theory Considerations 
 

 Group theory provides a powerful set of tools for predicting and interpreting vibrational 

spectra. In this section, we will consider how Group Theory helps us to understand these 

important phenomena. 

Transformation of Axes and Rotations 
 

 It is possible to determine the symmetry species or irreducible representation by which 

each of the three Cartesian coordinate axes transform.  This is useful, particularly in determining 

selection rules in spectroscopy, as the components of a molecule’s dipole moment will transform 

as these axes.  The rotations are also useful in understanding the rotational selection rules. 

 

Recall the character table for the C2v point group. 
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C2v E C2 v v’ 

A1 1 1 1 1 

A2 1 1 -1 -1 

B1 1 -1 1 -1 

B2 1 -1 -1 1 

 

It is useful to determine how each axis (x, y and z) is transformed under each symmetry 

operation.  Once this is done, it will be easy to determine the representation that transforms the 

axis in this way.  A table might be useful.  Recalling our designation of the v operation as 

reflection through the xz plane, it can be shown easily that the axes transform as follows: 

 

C2v E C2 v v’ 

x x -x x -x 

y y -y -y y 

z z z z z 

 

The z-axis is unchanged by any of the symmetry operations.  Another way of saying this 

is that the z-axis is symmetric with respect to all of the operations.  (In this point group, all of the 

symmetry elements happen to intersect on the z-axis, which is why it is unchanged by any of the 

symmetry operations.)  The conclusion is that the z-axis transforms with the A1 representation.   

 

The other axes can be described the same way. Note that the x-axis is symmetric with 

respect to the v operation and the E operation.  (Everything is symmetric with respect to the E 

operation, oddly enough.)  The x-axis is antisymmetric, however, with respect to the v’ and C2 

operations.  The results for all axes can be summarized in the character table. 

  

C2v E C2 v v’  

A1 1 1 1 1 z 

A2 1 1 -1 -1  

B1 1 -1 1 -1 x 

B2 1 -1 -1 1 y 

 

Rotations about the x, y and z axes can be characterized in a similar fashion.  Consider 

the angular momentum vector for each rotation and how it transforms.  Such a vector can be 

constructed using he right-hand rule.  If the fingers on your right hand point in the direction of 

the rotation, your thumb points in the direction of the angular momentum vector. 

 

Rotation about the z-axis (Rz) is symmetric with respect to the operations E and C2, but 

antisymmetric with respect to operations v and v’.  Rotation about the x-axis is symmetric with 

respect to E and C2.  Clearly, this operation transforms as the irreducible representation A2.  

Rotation about the x-axis and y-axis can also be characterized as following the properties of the 

B2 and B1 representations respectively.  As such, the character table for C2v can be augmented to 

include this information. 
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C2v E C2 v v’   

A1 1 1 1 1 z  

A2 1 1 -1 -1  Rz 

B1 1 -1 1 -1 x Ry 

B2 1 -1 -1 1 y  Rx 

 

Another interpretation of the transformation of the x, y and z-axes is that the 

representations that indicate the symmetries of these axes in the point group also indicate how 

the px, py and pz orbitals transform.  The set of d orbital wavefunctions can also be used.  These 

transformations are generally given in another column in the character table.  (This information 

is also useful for calculating polarizabilities, and hence selection rules for Raman transitions!) 

 

C2v E C2 v v’    

A1 1 1 1 1 z  x2-y2, z2 

A2 1 1 -1 -1  Rz xy 

B1 1 -1 1 -1 x  Ry xz 

B2 1 -1 -1 1 y Rx yz 

Characterizing Vibrational Modes 
 

 Vibrational wave functions describing the normal modes of vibrations will be 

eigenfunctions of the symmetry properties of the group.  As such, group theory can be quite 

useful in determining the vibrational selection rules needed to predict infrared spectra. 

 

 The number of vibrational degrees of freedom for a molecule is given by (3N-6) if the 

molecule is non-linear and (3N-5) if it is linear.  In these expressions, N is the number of atoms 

in the molecule.  One way to think of these numbers is that it takes 3N Cartesian coordinates (an 

x, y and z variable) for each atom in the molecule to fully specify the structure of a molecule.  As 

such, 3N is the total number of degrees of freedom. 

 

 Since the molecule can translate through space in the x, y or z directions, three (3) 

degrees of freedom belong to translation.  One can also think of these three degrees of freedom 

being the three Cartesian coordinates needed to specify the location of the center of mass of the 

molecule – or for the translation of the center of mass of the molecule.   

 

For non-linear molecules, rotation can occur about each of the three Cartesian axes as 

well.  So three (3) degrees of freedom belong to rotation for non-linear molecules.  Linear 

molecules only have rotational degrees of freedom about the two axes that are perpendicular to 

the molecular axis (which remember is the C axis – and thus the z-axis.)  So linear molecules 

only have two (2) rotational degrees of freedom.   

 

 The sum of the irreducible representations by which the vibrational modes transform can 

be found fairly easily using group theory.  The first step is to determine how the three Cartesian 

axes transform under the symmetry operations of the point group.  As an example, let’s use water 
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(H2O), which belongs to the C2v point group since it is familiar.  Later, we will work though a 

more complex example. 

 

 Consider the character table for the C2v point group. 

 

C2v E C2 v v’    

A1 1 1 1 1 z  x2-y2, z2 

A2 1 1 -1 -1  Rz xy 

B1 1 -1 1 -1 x  Ry xz 

B2 1 -1 -1 1 y Rx yz 

 

The sum of the representations by which the axes transform will be given by B1 + B2 + A1. 

 

C2v  E C2 v v’  

1 A1 1 1 1 1 z 

2 B1 1 -1 1 -1 x  

3 B2 1 -1 -1 1 y 

xyz A1 + B1 + B2 3 -1 1 1  

 

The reducible representation ( xyz) is then multiplied by the representation generated by 

counting the number of atoms in the molecule that remain unmoved by each symmetry element.  

This representation for water is generated as follows: 

 

 

 

 

 

 

 

 

The reducible representation that describes the transformation of the Cartesian 

coordinates of each of the atoms in the molecule are given by the product of xyz  unmoved as 

shown in the following table. 

 

C2v E C2 v v’ 

xyz 3 -1 1 1 

unmoved 3 1 1 3 

total = xyz  unmoved 9 -1 1 3 

 

Note that the order of total is given by 3N.  This is the sum of representations needed to 

describe the transformation of each of the Cartesian coordinates for each atom.  f the 

representation for the Cartesian coordinates (xyz) is subtracted from total, the remainder 

C2v E C2 v v’ 

     

H1  - -  

H2  - -  

unmoved 3 1 1 3 
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describes the sum of representations by which the rotations and vibrations transform, and this 

result should be of order (3N-3).  Let’s see . . . 

 

C2v E C2 v v’ 

total 9 -1 1 3 

xyz 3 -1 1 1 

vib+rot 6 0 0 2 

 

So far, so good.  Now let’s subtract the sum of the representations by which the rotations 

transform.  The remainder of this operation should be of order (3N-6) and give the sum of 

irreducible representations by which the vibrations transform. 

 

C2v E C2 v v’ 

vib+rot 6 0 0 2 

rot 3 -1 -1 -1 

vib 3 1 1 3 

C2v E C2 v v’ 

A1 1 1 1 1 

A1 1 1 1 1 

B2 1 -1 -1 1 

vib 3 1 1 3 

 

A quick calculation shows that this result is generated by the sum of A1 + A1 + B2. To see 

this, we can use the Great Orthogonality Theorem.  (I told you it was great!)  In this case, the 

number of vibrational modes that transform as the ith irreducible representation is given by the 

relationship 

=
R

vibii RR
h

N )()(
1

  

 

For the A1 representation, this sum looks as follows. 
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The result for the A2 representation should come to zero since no vibrational modes transform as 

A2.  For the A2 representation, this sum looks as follows. 
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For B1 and B2 the sum looks as follows: 
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Let’s see if that makes sense!  Consider the three normal-mode vibrations in water.  These (the 

symmetric stretch, the bend and the antisymmetric stretch) can be depicted as follows: 

 

 
 

It is fairly simple to show that the symmetric stretch and the bending mode both transform as the 

A1 representation.  Similarly, the antisymmetric stretching mode transforms as the B2 

representation.  (Note that we have chosen the xz plane (or the v plane) to lie perpendicular to 

the molecule!) 

 

Example: Find the symmetries of the normal vibrational modes of ammonia. 

 

Solution: Recall the character table for the C3v point group: 

 

C3v E 2 C3 3v   

A1 1 1 1 z  

A2 1 1 -1  Rz 

E 2 -1 0 x, y Rx, Ry 
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The representation for total can be found in the same way as before.  Once we have total, vib is 

determined as before. 

 

C3v E 2 C3 3v 

xyz 3 1 1 

unmoved 4 1 2 

total 12 1 2 

 

 

C3v E 2 C3 3v 

total 12 1 2 

xyz 3 1 1 

rot 3 0 -1 

vib 6 0 2 

 

The GOT can be used to find how many modes of each symmetry are present.  

 

Mode 
Freq. 

(cm-1) 
Sym. 

Umbrella 

 

1139 A1 

Bend  1765 E 

 

Antisym. 

Str. 
 3464 E 

 

Sym. Str. 

 

3534 A1 
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So there are two (2) A1 modes and two (2) doubly degenerate E modes of vibration.  These can 

be summarized in the table to the right. 
 

 

Another Example: The vibrational modes of SF4 

 

 
 

SF4 is an example of a molecule with a “see saw” geometry.  It belongs to the point group 

C2v like water.  Let’s find the symmetries of the normal modes of vibration using group theory.  

First, we must generate total. 

 

C2v E C2 v v’ 

xyz 3 -1 1 1 

unmoved 5 1 3 3 

total  15 -1 3 3 

 

Now, subtract xyz and rot to generate vib as shown above. 

 

So this implies that there are nine degrees of freedom due to vibration.  This is the result 

we expect since for the 5-atom non-linear molecule, (3N-6) = 9.  To generate the number of 

vibrational modes that transform as the A1 irreducible representation, the follow expression must 

be evaluated. 

 

 

C2v E C2 v v’ 

total  15 -1 3 3 

xyz 3 -1 1 1 

rot 3 -1 -1 -1 

vib  9 1 3 3 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: The Harmonic Oscillator © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

127 

 

( )

( )

( )

4

16
4

1

)3()1()3()1()1()1()9()1(
4

1

)()()()()()()()(
1 ''

22 11111

=

=

+++=

+++= vvibvAvvibvAvibAvibAA CCEE
h

N 

 

 

Similarly,  
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So there should be 4 vibrational modes of A1 symmetry, 1 of A2 symmetry and two each 

of B1 and B2 symmetry.  A calculation of the structure and vibrational frequencies in SF4 at the 

B3LYP/6-31G(d) level of theory1 yields the following. 

 

Mode Freq. (cm-1) Symmetry Mode Freq. (cm-1) Symmetry 

1 189 A1 6 584 A1 

2 330 B1 7 807 B2 

3 436 A2 8 852 B1 

4 487 A1 9 867 A1 

5 496 B2    
 

 

The calculation also allows for the simulation of the infrared spectrum of SF4. 

 

 
1 Calculation performed using Gaussian 98 (http://www.gaussian.com/) using the WebMO (http://www.webmo.net/) 

web-based interface. 
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What would be exceptionally useful is if group theory could help to identify which vibrational 

modes are active – or if any are inactive.  Fortunately, it can!  (And now how much would you 

pay?)  The tools for determining selection rules depend on direct products. 

 

Intensity 
 

 Group theory provides tools to calculate when a spectral transition will have zero 

intensity, and this will not be seen. In this section, we will se how group theory can help to 

determine the selection rules that govern which transitions can and cannot be see. 

 

Intensity  ( ) ( )
2

*
"'  d


 

 

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude 

squared of the transition moment matrix element. 

 

By knowing the symmetry of each part of the integrand, the symmetry of the product can 

be determined as the direct product of the symmetries of each part ( ’)*, ( ”) and .  This is 
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helpful, since the integrand must not be antisymmetric with respect to any symmetry elements or 

the integral will vanish by symmetry.  Before exploring that concept, lets look at the concept of 

direct products. 

 

This is a concept many people have seen, in that the integral of an odd function over a 

symmetric interval, is zero.  Recall what it means to be an “odd function” or an “even function. 

 

Symmetry definition Intensity 

Even f(-x) = f(x)  −
=

a

a

a

dxxfdxxf
0

)(2)(  

Odd f(-x) = -f(x) −
=

a

a
dxxf 0)(  

 

Consider the function ( ) 2

3)( 3 xexxxf −−= .  A graph of this function looks as follows: 

 

 
 

One notes that the area under the curve on the side of the function for which x > 0 has exactly the 

same magnitude but opposite sign of the area under the other side of the graph.  Mathematically, 
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It is also interesting to note that the function f(x) can be expressed as the product of two 

functions, one of which is an odd function ( xx 33 − ) and the other which is an even function (
2xe−
).  The result is an odd function.  By determining the symmetry of the function as a product 

of the eigenvalues of the functions with respect to the inversion operator, as discussed below, 

one can derive a similar result.   

 

The even/odd symmetry is an example of inversion symmetry.  Recall that the inversion operator 

(in one dimension) affects a change of sign on x. 
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)()(ˆ xfxfi −=  

 

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either 

+1 or –1.  For the function used in the previous example,  

 
)()()( xhxgxf =  

 

where 

 

xxxg 3)( 3 −=          and 
2

)( xexh −=  

 

Here, g(x) is an odd function and h(x) is an even function.  The product is an odd function.  This 

property is summarized for any )()()( xhxgxf = , in the following table. 

 

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x) 

even even even 1 1 1 

even odd odd 1 -1 -1 

odd odd even -1 -1 1 

 

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for 

the irreducible representation by which the function transforms!  In a similar manner, any 

function that can be expressed as a product of functions (like the integrand in the transition 

moment matrix element) can be determined as the direct product of the irreducible 

representations by which each part of the product transforms. 

 

Consider the point group C2v as an example.  Recall the character table for this point group. 

 

C2v E C2 v v’    

A1 1 1 1 1 z  x2-y2, z2 

A2 1 1 -1 -1  Rz xy 

B1 1 -1 1 -1 x  Ry xz 

B2 1 -1 -1 1 y Rx yz 

 

The direct product of irreducible representations can by the definition 

 

)()()( RRR jiprod  =  

 

So for the direct product of B1 and B2, the following table can be used. 

 

C2v E C2 v v’ 

B1 1 -1 1 -1 
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B2 1 -1 -1 1 

B1B2 1 1 -1 -1 

 

The product is actually the irreducible representation given by A2!  As it turns out, the 

direct product will always yield a set of characters that is either an irreducible representation of 

the group, or can be expressed as a sum of irreducible representations.  This suggests that a 

multiplication table can be constructed.  An example (for the C2v point group) is given below. 

 

C2v A1 A2 B1 B2 

A1 A1 A2 B1 B2 

A2 A2 A1 B2 B1 

B1 B1 B2 A1 A2 

B2 B2 B1 A2 A1 

 

Studying this table reveals some useful generalizations.  Two things in particular jump from the 

page.  These are summarized in the following tables. 

 

 A B     1 2 

A A B    1 1 2 

B B A    2 2 1 

 

This pattern might seem obvious to some.  It stems from the idea that  

 

symmetric*symmetric = symmetric 

symmetric*antisymmetric = antisymmetric 

antisymmetric*antisymmetric = symmetric 

 

Noting that A indicates an irreducible representation is symmetric with respect to the C2 

operation and B indicates that the irreducible representation is antisymmetric . . and that the 

subscript 1 indicates that an irreducible representation is symmetric with respect to the v 

operation, and that a subscript 2 indicates that the irreducible representation is antisymmetric . . 

the rest seems to follow!  Some point groups have irreducible representations use subscripts g/u 

or primes and double primes.  The g/u subscript indicates symmetry with respect to the inversion 

(i) operator, and the prime/double prime indicates symmetry with respect to a  plane (generally 

the plane of the molecule for planar molecules).   

 

This method works well for singly degenerate representations.  But what does one do for 

products involving doubly degenerate representations?  As an example, consider the C3v point 

group. 

 

 

 

 

 

C3v E 2 C3 3v   

A1 1 1 1 z  

A2 1 1 -1  Rz 

E 2 -1 0 (x, y) (Rx, Ry) 

C3v E 2 C3 3v 

A2 1 1 -1 

E 2 -1 0 

A2E 2 -1 0 
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Consider the direct product of A2 and E. 

 

This product is clearly just the E representation.  Now one other example – Consider the product 

EE. 

 

C3v E 2 C3 3v 

E 2 -1 0 

E 2 -1 0 

EE 4 1 0 

 

To find the irreducible representations that comprise this reducible representation, we 

proceed in the same manner as determining the number of vibrational modes belonging to each 

symmetry. 

 

 

 

  1)0)(0(3)1)(1(2)4)(2(
6

1

1)0)(1(3)1)(1(2)4)(1(
6

1

1)0)(1(3)1)(1(2)4)(1(
6

1

2

1

=+−+=

=−++=

=++=

E

A

A

N

N

N

 

 

This allows us to build a table of direct products. Notice that the direct product always has the 

total dimensionality that is given by the product of the dimensions.  

 

C3v A1 A2 E 

A1 A1 A2 E 

A2 A2 A1 E 

E E E A1+ A2+E 

 

Now that we have a handle on direct products, we can move on to selection rules. 

 

Selection Rules 
 

 According to quantum mechanics, transitions will only be allowed (have non-zero 

intensity) if the squared magnitude of the transition moment (
2

"'*  d


 ) is not zero. If the 

integral vanishes by symmetry, obviously the transition moment will have zero magnitude and 

the transition is forbidden and will not be seen.  In order to determine if the integral vanishes by 

symmetry, it is necessary to determine the symmetry by which the dipole moment operator 

transforms.  
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This ( 


) is a vector operator and can be decomposed into x, y and z components.  As such, the 

transition moment is also a vector property that can have x-, y- and/or z-axis components.  

Clearly, it will be important to determine how the three axes transform.  Fortunately, this 

information is contained in character tables!  Consider the following two point groups, C3v and 

C2v. 

 

 

 

 

 

 

 

In the case of C2v, it is clear that the x-, y- and z-axes transform as the B1, B2 and A1 irreducible 

representations respectively.  In the case of C3v, the z-axis transforms as A1, but the x- and y-axes 

come as a pair and transform as the E irreducible representation.  It will always require two axes 

to complete the basis for a doubly degenerate representation. 

 

Under the C2v point group, any vector quantity will transform as the sum of A1+B1+B2 as we saw 

for xyz before.  Further, one can say that the x-axis component transforms as B1, the y-axis 

component as B2 and the z-axis component as A1.  By a similar token, under the C3v point group, 

a vector quantity transforms as the sum of A1+E.  The z-axis component transforms as A1 and the 

x- and y-axis components come as a pair that transform by the E representation.  All that is 

needed to complete the picture is to determine the symmetries of the upper and lower state wave 

functions. 

 

Infrared Active Transitions 
 

In order for a spectral transition to be allowed by electric dipole selection rules, the transition 

moment integral must not vanish. 

 

 d "'*


 

 

This can be determined by using the irreducible representations by which the two wavefunctions 

transform and the three components of the transition moment operator, which will be x, y and z. 

 

 d  "'
  

 

If the direct product of the integrand does not contain at least a component of the totally 

symmetric irreducible representation, the integral will vanish by symmetry. 

 

Example: The three vibrational modes of H2O transform by A1 (symmetric stretch), A1 (bend)  

and B2 (antisymmetric stretch.)  Will the symmetric stretch mode be infrared active? 

C3v E 2 C3 3v   

A1 1 1 1 z  

A2 1 1 -1  Rz 

E 2 -1 0 (x, y) (Rx, Ry) 

C2v E C2 v v’   

A1 1 1 1 1 z  

A2 1 1 -1 -1  Rz 

B1 1 -1 1 -1 x  Ry 

B2 1 -1 -1 1 Y Rx 
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Solution: For the symmetric stretch, which transforms as A1, the transition moment integrand 

will be have symmetry properties determined by the product 

 

"' 
















z

y

x

  1

1

2

1

1 A

A

B

B

A
















 

 

where one of the irreducible representations from the set in the middle of the product may be 

used.  (They are the irreducible representations by which the x, y and z axes transform.)  In this 

case, the z-axis must be used. 

 

A1∙A1∙A1 = A1 

 

This is the only component that will not vanish. 

 

When the z-axis component must be used to make the transition moment operator not vanish, the 

transition is said to be a parallel transition.  Transition moments that lie along axis perpendicular 

to the z-axis are said to be perpendicular transitions.  Parallel and Perpendicular Transitions often 

have very different selection rules and thus very different band contours. 

 

 

Another Method 
 

 Another method that can be used to see if a mode is infrared active is to take the direct 

product of the irreducible representations of the wavefunction, and use xyz for the transition 

moment.  If the resulting product has a component that is totally symmetric, the mode will be 

infrared active. 

 

Example: Is the antisymmetric stretch mode of water predicted to be infrared active? 

 

Solution:  This mode transforms as the B2 irreducible representation.  xyz is given by 

 

xyz = B1 + B2 + A1 

 

So: 

 

C2v E C2 xz yz 

B2 1 -1 -1 1 

xyz 3 -1 1 1 

prod 3 1 -1 1 
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The resulting reducible representation will have a component of the totally symmetric irreducible 

representation. 

 

A1∙prod = (1)(3) + (1)(1) + (1)(-1) + (1)(1) = 4 

 

So the A1 irreducible representation appears once in the product reducible representation.  In 

fact, the component that does not vanish is due to the presence of B2 in xyz.  Hence, the 

transition is predicted to be a perpendicular ⊥ transition, since the transition moment lies along 

the y-axis. 

 

 

Example: Will the E modes in NH3 be infrared active? 

 

Solution: 

In the C3v point group, xyz is given by A1 + E 

 

C3v E 2 C3  v 

E 2 -1 0 

xyz 3 0 1 

prod 6 0 0 

 

prod clearly has the totally symmetric irreducible representation as a component. 

 

A1∙prod = (1)(6) + 2(1)(0) + 3(1)(0) = 6 

 

In fact, it is the E component of xyz that makes this transition allowed (and so it is a 

perpendicular (⊥) transition. 

 

C3v E 2 C3  v 

E 2 -1 0 

E 2 -1 0 

prod 4 1 0 

 

A1∙prod = (1)(4) + 2(1)(1) + 3(1)(0) = 6 

 

 

Vibrational Raman Spectra 
 

Vibrational Raman spectroscopy is often used as a complementary method to infrared 

spectroscopy.  The selection rules for Raman spectroscopy can be determined in much the same 

way, except that a polarizability integral must be used.  The polarizability operator can be 

expressed as a 3x3 tensor of the form 
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















=

zzzyzx

yzyyyx

xzxyxx







α  

 

This tensor is symmetric along the diagonal, and the elements transform in the same ways as the 

functions x2, y2, z2,xy, xz and yz. 

 

Example: What are the vibrational mode symmetries for the molecule H2CCH2 which 

transforms as the D2h point group?  Which modes will be infrared active?  Which will be Raman 

active? 

 

Solution: 

Set up the vibrational analysis table in the usual manner. 

 

D2h E C2(z) C2(y) C2(x) i xy xz yz   

Ag 1 1 1 1 1 1 1 1  x2, y2, z2 

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy 

B2g 1 -1 1 -1 1 -1 1 -1 Ry xz 

B3g 1 -1 -1 1 1 -1 -1 1 Rx yz 

Au 1 1 1 1 -1 -1 -1 -1   

B1u 1 1 -1 -1 -1 -1 1 1 z  

B2u 1 -1 1 -1 -1 1 -1 1 y  

B3u 1 -1 -1 1 -1 1 1 -1 x  

xyz 3 -1 -1 -1 -3 1 1 1   

rot 3 -1 -1 -1 3 -1 -1 -1   

 

D2h E C2(z) C2(y) C2(x) i xy xz yz 

xyz 3 -1 -1 -1 -3 1 1 1 

unm 6 0 0 2 0 6 2 0 

tot 18 0 0 -2 0 6 2 0 

xyz 3 -1 -1 -1 -3 1 1 1 

 15 1 1 -1 3 5 1 -1 

rot 3 -1 -1 -1 3 -1 -1 -1 

vib
 12 2 2 0 0 6 2 0 

 

Decomposing to the individual components: 

 

D2h E C2(z) C2(y) C2(x) i xy xz yz sum #(h) 

Ag∙vib (1)(12) (1)(2) (1)(2) (1)(0) (1)(0) (1)(6) (1)(2) (1)(0) 24 3 

B1g∙vib (1)(12) (1)(2) (-1)(2) (-1)(0) (1)(0) (1)(6) (-1)(2) (-1)(0) 16 2 

B2g∙vib (1)(12) (-1)(2) (1)(2) (-1)(0) (1)(0) (-1)(6) (1)(2) (-1)(0) 8 1 
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B3g∙vib (1)(12) (-1)(2) (-1)(2) (1)(0) (1)(0) (-1)(6) (-1)(2) (1)(0) 0 0 

Au∙vib (1)(12) (1)(2) (1)(2) (1)(0) (-1)(0) (-1)(6) (-1)(2) (-1)(0) 8 1 

B1u∙vib (1)(12) (1)(2) (-1)(2) (-1)(0) (-1)(0) (-1)(6) (1)(2) (1)(0) 8 1 

B2u∙vib (1)(12) (-1)(2) (1)(2) (-1)(0) (-1)(0) (1)(6) (-1)(2) (1)(0) 16 2 

B3u∙vib (1)(12) (-1)(2) (-1)(2) (1)(0) (-1)(0) (1)(6) (1)(2) (-1)(0) 16 2 

 

So  

 

vib = 3 Ag + 2 B1g + B2g + Au + B1u + 2 B2u + 2 B3u 

 

Of these, the 6 gerade modes will be Raman active, and the five Bnu modes (n = 1, 2, 3) will be 

infrared active.  The Au mode will be dark. 
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Problems 
1. For each molecule, calculate the reduced mass (in kg) and the force constant for the bond (in 

N/m). 

 

Molecule e (cm-1)  (kg) k (N/m) 
1H79Br 2648.975   
35Cl2 559.72   
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12C16O 2169.81358   
69Ga35Cl 365.3   

 

2. The typical carbonyl stretching frequency is on the order of 1600-1900 cm-1.  Why is this 

value smaller than the value of e for CO given in the table above? 

 

3. The first few Hermite polynomials are given below.   

 

v Hv(y) 

0 1 

1 2y 

2 4y2
 – 2 

 

Hv+1(y) = 2yHv(y) – 2vHv-1(y) 

 

a. Use the recursion relation to generate the functions H3(y) and H4(y).   

b. Demonstrate that the first three Hermite polynomials (H0(y), H1(y)  and H2(y)) form an 

orthogonal set. 

 

4. The Morse Potential function is given by 

 

𝑈(𝑥) = 𝐷𝑒(1 − 𝑒−𝛽𝑥) 

 where x = (r – re). 

   

a. Find an expression for the force constant of a Morse Oscillator bond by evaluating 

b. For 1H35Cl, De = 7.31 x 10-19 J and  = 1.8 x 1010 m-1.  Use your above expression to 

evaluate k for the bond in HCl. 

c. On what shortcoming of the Harmonic Oscillator model does the Morse Potential 

improve?  What shortcoming does the Morse model share with that of a Harmonic 

Oscillator? 

 

5. The following data are observed in the vibrational overtone spectrum in 1H35Cl (Meyer & 

Levin, 1929). 

 

v’ ← v” 𝜈𝑜𝑏𝑠 (cm-1) 

1 ← 0 2885.9 

2 ← 0 5666.8 

3 ← 0 8347.0 

4 ← 0 10923.1 

5 ← 0 13396.5 

 

From these data, calculate a set of Gv+1/2 values. Fit these results to the form 
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Δ𝐺
𝑣+

1
2

= 𝜔𝑒 − 2 𝜔𝑒𝑥𝑒(𝑣 + 1) 

 

 to determine values for e and exe for HCl. 

 

6. The following wavenumber frequencies are reported for the band origins for the 1 – v” bands 

in an electronic transition of a diatomic molecule. Using the Birge-Sponer method, determine 

the dissociation energy of the molecule in its ground electronic state. 

 

v" Wavenumber (cm-1) Gv+1/2 (cm-1) 

 19586.9  

 19522.3  

 19504.8  

 19465.9  

 19418.3  

 19375.1  

 19323.2  

 19275.7  

 19223.8  

 19167.6  

 19111.4  

 19050.9  

 18990.4  

 18925.6  

 18860.7  

 18795.9  

 18722.4  

 18653.3  

 18579.8  

 18506.3  

27 18428.5  

 18342.1  

 18259.9  

 18177.8  

 18091.5  

 17996.3  

 17909.8  

 17814.8  

 17719.7  

 17624.6  
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