Chapter 3: An Introduction to Group Theory

Many problems in chemistry can be simplified based on the symmetry of molecules
and/or the symmetries of atomic and molecular orbitals. Since this course will deal mostly in the
mathematical models used to describe molecular motions (rotations and vibration) and the
orbitals needed to describe the electronic structure of atoms and molecules, some introduction to
the mathematics of symmetry is useful. The concepts discussed in this chapter will be used
through the text to demonstrate how symmetry can be used to simplify the descriptions of atomic
and molecular behavior.

Overview

Group Theory is the mathematical theory associated with the mathematical properties of
groups. In chemistry, group theory is the mathematics of symmetry. A group (G) is a set of
elements (A, B, etc.) that can be associated through a mathematical operation (sometimes
referred to as a multiplication operation, eg. A*B) and satisfying the following criteria:

1. The group must have an identity element (E) such that for each element A in the
group, A*E = E*A = A. (It can be proven that for a given group and multiplication
operation, the identity element is unique.)

2. Each element A in the group must have an inverse (A™!) that is also a member of the
group and that satisfies the criterion A*A™' = A"'*A = E. (It can be proven that each
element has one and only one inverse.)

3. The group must be closed under multiplication. That means that for any pair of
elements in the group A and B for which A*B = C, C must also be a member of the
group.

Note that the multiplication operation need not be commutative. The order of multiplication
may matter. There is no guarantee that A*B = B*A. Many groups that satisfy this property are
called abelian groups.

The set of numbers 1 and —1 form an abelian group under the normal operation of simple
multiplication. A simple group multiplication table can be constructed for this group.

1 -1
1 1 -1
-1 -1 1

Clearly, the identity element in this group is 1 since multiplication by 1 gives the same number
back. Also, both members happen to be their own inverse since

1*1=1 and D*-1)=1
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Group Theory in Chemistry

In Chemistry, group theory is useful in understanding the ramifications of symmetry

within chemical bonding, quantum mechanics and spectroscopy. The group elements we are
concerned with are symmetry operations.

Operation

Description

Element

Mathematical

example

E identity This is the “don’tdo | E. E (x,y,2) = (X,y,2)
anything to it”
operation
Cn Proper This is an operation in | Cn. The axis Ca(x,y,2) = (¥,-X,Z)
rotation which the object is with the largest
rotated about an axis | value of n is Ca(x,y,2) = (-X,-Y,Z)
by an angle of 21t/n designated the
radians. The axis will | “principle Etc.
be referred to as the rotation axis”
“Ch axis”. and the z-axis
is always
assigned as
lying along the
principle
rotation axis.
c Reflection | This operation Gv, Gd Of Gh. ov(X,y,2) = (-X,Y,2)
plane involves reflection of | 5, and o4 (for reflection
the object through a contain the through the yz plane)
mirror plane. princip]e
rotation axis, on(x,y,2) = (X,y,-2)
whereas on
planes are Gd(X,y,Z) = (ij’z)
perpendicular
to the principle
rotation axis.
1 Inversion | This operation 1. The inversion | i(X,y,z) = (-X,-y,-Z)
center involves reflection center (if it
trough a point. exists) will
always be
located at the
center of mass
of a molecule.
Sh Improper | This operation Sh.
rotation involves a rotation
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through a C, axis
followed by reflection
by a on plane.

Molecular Geometry

( Chiral point groups
() Achiral point groups

Q1: Twoor more Cowithn 237
Q2: Select C,, with highest n; then
are n Cs perpendicufar to Ca7
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A symmetry operation is a geometrical manipulation that leaves an object in a geometry
that is indistinguishable from that which it had before the manipulation. There are five important
types of symmetry operations with which we are concerned. Each type of operation has an
associated symmetry element. Using standardized notation, these operations and elements can
be summarized as follows.

A given molecule may have several of the above symmetry elements. The particular
combination will define a group, and that group can be given a named based on the type of
symmetry elements it contains. Further, all of the convenient wavefunctions that describe the
vibrations, rotations and molecular orbitals of the molecule will be eigenfunctions of the
symmetry elements, forcing some very useful mathematical properties upon the wavefunctions.

A case study: the symmetry of a tennis racket

A tennis racquet has all of the same symmetry elements as a water molecule or a
formaldehyde molecule. Let’s identify these symmetry elements and write out a group
multiplication table for the group to which that particular set belongs.

The most obvious symmetry element is always the identity element (E). Every object possesses
this symmetry element. Some objects are so asymmetrical that this is the only symmetry element
they possess. Certainly, a tennis racquet possesses the symmetry element E.

The next most useful element to examine is the reflection plane. An object may or may not
possess this type of symmetry. A tennis racquet has two vertical (oy) reflection planes. One is in
the plane of the strings and the other is perpendicular to the face of the racquet. This happens
often that an object has more than one of a given type of symmetry element. For our purposes,
we will designate the plane that is perpendicular to the face of the racquet as ov and the one that
is parallel to the face of the racquet as ov’.

A tennis racquet possesses neither an inversion center (i) nor an improper rotation axis (Sy).

The set of symmetry elements that the object does possess (E, Cz, oy and cy’) define a group that
goes by the label Coy. Any object that has these and only these symmetry elements is said to
have Coy symmetry. It is easy to demonstrate that the set of symmetry elements that define Cay
define a group.

Determining the Point Group for a Molecule: the Schoenflies notation

The first step in determining the point group for a molecule is to determine the structure
of the molecule. Once this is done, identify all of the symmetry elements the molecular structure
possesses. Once this has been accomplished, you can use the preceding flowchart to determine
the correct point group using the Scheonflies notation system.

Example: Determine the point group for a methane molecule.
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Solution: A methane molecules has tetrahedral symmetry. It contains the following symmetry
elements: E, 4 C3 (one each along a C-H bond) axes, 6 ¢ planes (one each containing the carbon
and a pair of hydrogen atoms), 3 C, axes (each on bisecting an HCH bond angle.) It also has 3
S4 axes (each one co-linear with a C; axis.) The molecule belongs to the point group Tq, as can
be discerned from the following analysis.

1. Is the molecular Linear? No H

2. Does the molecule have two or more Cp>3 axes? Yes l

3. Does the molecule have a Cy>4 axis? No H‘}C ~H
4. Does the molecule have any ¢ planes? Yes H

5. Does the molecule have an inversion center? No

=>» The molecule belongs to the T4 Point Group.

Example: Determine the point group for CH3Cl.

Solution: Chloromethane has the same tetrahedral shape as methane, but belongs to the point
group Csy. The molecule has the following symmetry elements: E, C3 (along the C-CI bond axis)
and 3 oy planes (each containing the chlorine and carbon atoms plus one hydrogen

atom. The classification of the molecule goes as follows: Cl
I
1. Is the molecule linear? No H"CmH
2. Does the molecule have two or more Cy>3 axes? No I:I
3. Does the molecule have a C, axis? Yes
4. Are there n C; axes perpendicular to the principle axis? No
5. Does the molecule have a oy plane? No
6. Does it have n oy planes? Yes

=>» The molecule belongs to the Csy point group.

Example: Determine the point group for benzene.

Solution: Benzene has a planar geometry and belongs to the point group Den. The molecule

possesses the following symmetry elements: E, Cs, 6 C2, 6 6y, on and i. The classification of the
molecule goes as follows:

1. Is the molecule linear? No H

2. Does the molecule have two or more Cp>3 axes? No H H
3. Does the molecule have a C, axis? (n = 6 for benzene) Yes

4. Are there n C; axes perpendicular to the principle axis? Yes

5. Does the molecule have a o plane? Yes H H

H
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=>» The molecule belongs to the point group Den

Example: Classify ethane by its point group.

Solution: Ethene has a planar geometry. The molecule possesses the following symmetry
elements: E, 3 C2, 3 6, and i. The classification of the molecule goes as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more Cy>3 axes? No
3. Does the molecule have a C, axis? Yes (n =2)
4. Are there n C; axes perpendicular to the principle axis? Yes
5. Does the molecule have a oy, plane? Yes

=>» The molecule belongs to the D2y point group.

Example: Classify the isomers of dichloroethene by their point groups.
Solution: Dichloroethene has three isomers. All of them have a planar geometry.
The cis- and gem- isomers have the following symmetry elements: E, C,, and 2 oy. (The 1,1- (or

gem-) isomer has the same elements as the cis- isomer.) The classification of the molecule goes
as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more Cp>3 axes? No
3. Does the molecule have a C, axis? Yes (n=2)
4. Are there n C; axes perpendicular to the principle axis? No
5. Does the molecule have a oy, plane? No
6. Does the molecule have n oy planes? Yes

=>» The cis-isomer belongs to the Cay point group.

The trans-isomer has the following symmetry elements: E, Cz, oy, and i. The classification of the
molecule goes as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more Cp>3 axes? No
3. Does the molecule have a C, axis? Yes (n=2)
4. Are there n C; axes perpendicular to the principle axis? No
5. Does the molecule have a o, plane? Yes

Quantum Chemistry with Applications in Molecular Spectroscopy: Introduction to Group Theory © 2022
Patrick E. Fleming - Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0
(CC BY-NC-SA 4.0)

80



https://creativecommons.org/licenses/by-nc-sa/4.0/

=>» The trans-isomer belongs to the Ca, point group.

Multiplication Operation for Symmetry Elements

Multiplication is fairly simple when it comes to symmetry operations. One simply applies
the operations from right to left. Going back to the tennis racket example, it is fairly simple to
visualize each symmetry element. To show this, it is useful to construct a group multiplication
table. To do this, it is useful to pick a corner of the object and imagine where it is transported
under a pair of sequential operations. Then imagine what operation will affect the same
transformation directly. By applying them pairwise, one can generate the group multiplication
table:

Cxw |E C Cv Gy
E E Cz Oy oy
C Cz E Ov Cv
ov |ov o E C2
GV’ Gv’ Ov C E

What should jump right out from this multiplication table is that the group Cay 1) is abelian
(actually, this will become clear after the term is defined) and 2) has the property that each

element happens to be its own inverse! For some objects (such as a three-legged stool or an
ammonia molecule) this will not be the case.

More definitions: Order and Class

An important definition is the order of a group. The order (h) is simply the number of
symmetry elements in the group. For the Cay point group, the order is h=4.

Another important concept defines the number of classes of operations a point group
contains. Two operations (A and B) belong to the same class if there is a third operation (C) in
the group that relates them by the similarity transform

C'AC=B

According to this definition, the operations A and B are said to be complementary. A
complete set of complementary operations within a group defines a class. This will be
demonstrated later, using the Csy point group operations.

In the case of the Cay point group, no two elements are in the same class. This has some
very important ramifications for the point group. A group for which this the case is said to be an
abelian group. Not all point groups will have this property however.
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Representations

A representation is any mathematical construct that will reproduce the group
multiplication table. In general, there are an infinite number of representations possible for a
given group, however, most of them will be related through simple relationships, and thus can be
constructed from (or reduced to) other representations. Those that cannot be reduced to linear
combinations of other representations are called irreducible representations. The irreducible
representations are particularly useful as they can be used to predict the mathematical properties
of any function that is an eigenfunction of all of the symmetry elements of a group. The number
of classes of operations always gives the number of irreducible representations. Each irreducible
representation can be labeled as I’

To construct a representation for a group, one must assign each operation a mathematical
element. For the Cyy point group, we can get away with using either 1 or —1 for each element.
(This is a consequence of each operation belonging to its own class.) The simplest
representation can be constructed by assigning each symmetry element as 1. The group
multiplication table will hold, as can be seen below.

Cw | 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Note that each product gives a value that corresponds to the correct element. For
example, we let C2 = 1 and 6y = 1. The product of C>*cy yields 6v’. And since the value we
assigned 6y” =1..and 1*1 =1 .. everything worked. This particular representation seems
pretty trivial since it has to work for any multiplication table that can ever be written! In fact,
every point group has this type of representation. Since 1 gives all of the elements of this
representation, this is called the totally symmetric representation.

Another representation (I'2) can be constructed in which E and C; are represented by a 1
and oy and o’ are represented by —1. In this case, the multiplication table looks as follows:

It should be clear again (or easily enough verified) that this has the same pattern as the group
multiplication table.
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Two other representations can be constructed in this manner (with all of the elements
given as either 1 or —1). Together with the first representation, these can be summarized as in the
following table.

Cay E [C |ov |6V
I'n |A1 |1 1 1 1
I | A2 1 1 -1 -1
I's | Bi 1 | -1 1 -1
I's |B2 |1 |-1 -1 )1

These irreducible representations (I';) go by a standardized set of naming rules. First, the
irreducible representations are all singly degenerate (no two-by-two or three-by-three matrices
were needed for the representations) so all of the irreducible representations are given the symbol
A or B. A is used if the representation is symmetric (1) with respect to the principle rotation axis
(C2) and B if it is antisymmetric (-1) with respect to the principle axis. The subscript is 1 if the
representation is symmetric with respect to the oy reflection plane, and 2 if the representation is
antisymmetric with respect to this plane of reflection. If an irreducible representation requires a
set of two-by-two matrices, the representation is designated E, and three-by-three matrix
irreducible representations are labeled T.

We’ll discuss more on the difference between a reducible and irreducible representation
later. First, lets work through a slightly more difficult point group. The Csy point group is not
abelian and requires matrices for some of the irreducible representations.

The Symmetry of a Triangular Pyramid: a more complex point group

An example of a point group that requires two-by-two matrix elements for the irreducible
representations is the Csy point group. This point group (which describes the symmetry elements
of an ammonia molecule or a pyramid with an equilateral triangular base) consists of the
symmetry elements E, Cs, C3” (or C3%), 6y, 6y’ and G,”.

In the figure to the left, the Cs axis runs perpendicular to the base of
the pyramid (you are looking straight down on the top of the pyramid)
and the Cs operation might
correspond to a clockwise rotation of
the figure about that axis. The C3’
axis 1s the same as the Cs axis, but the
C3’ operation corresponds to a
counterclockwise rotation by 27/3
radians. Note that this operation is
equivalent to performing the C3
operation twice (hence the alternative notation of Cs%.) The Gy, 2
oy’ and Gy” elements are reflection planes that lie perpendicular
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to the base, but each containing one edge of the pyramid. The reader is left to imagine the
identity element.

If the corners of the base of the pyramid are labeled for convenience, the effect of each symmetry
operation can be represented as follows.

E *(1,23) =(1,2,3) o *(12,3) =(1,32)
Cs *(1,23) =(3,1,2) o *(1,2,3) =(3.2,1)
C2*(1,2,3) =(23,1) o *(1,2,3) =(2,1,3)

Following these permutations, it is possible to construct the group multiplication table. The
group multiplication table for this group (Csy) looks as follows:

C3V E C3 C32 Ov Gv’ O'v”
E E C: |C? oy oy |ov
Cs Cs Cs> |E oy’ | oy oy’

C:2 |C? |E Cs oy, | oy | oy
2
Ov Gv o |o” |E Cs Cs
2
o’ |ow |o |ov Cs E Cs

5}
o’ |o” |ov o | GCs Cs E

From this information, it is possible to separate the operations into classes. Note, for example
that (6v)! = oy and (6v’)! = 6, and (6v”)"! = 6,”. Using these relationships, the similarity
transforms of C3 involving these operations all yield Cs2.

(Gv)-1 * C3 * Oy = (GV * C3) * Oy = GV,’ * Oy = C32
(@) *Cs* oy = (0 *C) ¥ o =ov* oy =CF
(GV”)-I * C3 * GV” — (GV” % C3) % GV” — Gv, % GV” — C32

Similarly, the similarity transforms on C3? using these operations all yield Cs.

(GV)-I * C32 * Oy = (GV * C32) * Ov = GV’ * Oy = C3
(GV,)-l % C32 % GV’ — (GV’ % C32) % GV’ — GV” % Gv, — C3
(Gv”)-l % C32 % Gv” — (Gv,’ % C32) %k Gv” =Gy %k GV” — C3

This is sufficient to indicate that the operations C3 and C3 belong to the same class. However, to
show that these are the only two operations in this class. Consider the similarity transforms based
on the operators E, C3 and C3? on Cs:

(E)'*C3*E=(E*C3) *E=E*C; =C;s
(C)'*C3*C3=(C32*C3) *C3=E*C3 =C;
(CHT*C3*C2=(C3*C3) *C32=C2*C32 =C;
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The fact that the result of a similarity transform on either C3 or C3? never results in oy, 6, or 6,7,
is a consequence of the proper rotation operations belonging to a

different class than the reflection planes. In fact, there are three * 1

classes of operations for this point group. This implies that there y

are three irreducible representations for this point group.

Another useful approach is to use matrix operators to affect the
changes to the object caused by the symmetry operation. The 3
choice of matrix operators depends on the basis set of functions

being used to model the system. In this case, we will use

position vectors of the corners of the bas of the pyramid. Other
choices of basis might be the atomic orbitals on the atoms in a molecule. This is a very
convenient choice when the task of constructing symmetry-adapted linear combinations of
atomic orbitals for the purpose of modeling molecular orbitals. But I digress . . .

Consider the position vectors of the corners of the base of our trigonal pyramid. They can be
specified by indicating the (X, y, z) coordinates if the origin is located in the plane of the base
along the axis where all of the symmetry elements intersect.

Corner x y z
1 0 y

5

2 12 _ /

(=]

3
1
243
3 12 1 0
Jrfs

4 0 0 h

Only corners 1, 2 and 3 will be important since none of the symmetry elements moves the fourth
corner! Assuming unit length for the base edges and a height of h for the pyramid, the following
table gives the (X, y, z) coordinates for each of the four corners.

From the previous discussion, we have already determined the effects of each of the symmetry
operations.

E *(13273) :(132,3) Ov *(15293) :(153,2)
Cs *(12,3) =(3,1,2) o *(1,2,3) =(3.2,1)
C2*(1,2,3) =(2,3,1) o *(12,3) =(2,1,3)

The task now is to construct matrix representations for each of the symmetry operations that will
affect the above stated changes when matrix multiplication is used as the operation.

1 0 0
E=0 1 0

The identity element is easy. It will be the 3x3 identity matrix given by
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This is easily confirmed since

oS O
oS = O
- o O
N ox
I
N

for any choice of X, y and z. The other operations are a little trickier, but not too hard. It can be
shown that the matrix that affects a rotation of o radians about the z-axis is given by

cosaa —-sina O
sinag cosa O
0 0 1

So that the resultant of this operation is given by

cosa —sina O0) x xXcosa — ysina
sine  cosa O y|=|xsina+ ycosa
0 0 1\ z z

For a rotation of 27t/3 radians, it is useful to note the following.

cos(2m/3) =-1/2
sin2n/3) = /3 /2

So the transformation of corner 1 of the pyramid is accomplished as follows for the C3 operation.

“1/2 =3/2 o) o0 ~1/2
3/2 —1/2 0| 1/\3|=|-1
0 0 1l o 0

The operation has transformed corner 1 into corner 3. It is also easily shown that the operator
matrix also transforms corner 2 into corner 1, and corner 3 into corner 2. This is just as expected
according to the expression shown above:

C3*(1,2,3)=(3, 1,2)

Additionally, the matrix must satisfy the multiplication table relationship of C3*Cs = C32.
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172 =372 0Y-=1/2 =3/2 0 —1/2 3/2 0
372 =172 0|A3/2 —1/2 ol=|-3/2 -1/2 0
0 0 1] o 0 1 0 0 1

This is the rotation matrix for a rotation of —27t/3 radians. Hence, the product worked out as
expected since the C3? operation is equivalent to the rotation of —27/3 radians.

The matrix representations for the 6y planes can be worked out by one of two methods. One is to
set up the matrix equation for how a point is transformed. The other is by using the group
multiplication table to generate a matrix as the product of two other operations in the group for
which the matrix has already been established.

To demonstrate these methods, recall from above that the oy operation exchanges corners 2 and
3. The matrix for this operation must satisfy the following expression:

Rll R12 R13 1/2 - 1/2
Ry Ry Ry |- 1/2\/5 =T 1/2\/3
Ry Ry, Ry 0 0

The matrix that will affect this transformation is:

oS O
S = O
— O O

Now, using the group multiplication table, we can generate oy’ and cy” by the relationships

Ov * C32 = Gv,
Ovy * C3 = GV”
or

0 0\ —1/2 +3/2 0 12 —=+/3/2 0
1 0|-~3/2 -1/2 0|=|-3/2 -1/2 0|=0,
0 1 0 0 1 0 0 1

~1 0 0\ -1/2 =+/3/2 0 172 J3/2 0
0 1 0of|~3/2 -1/2 0|=[~3/2 -1/2 0|=0,"
0 0 1) 0 0o 1 0 0 1
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The set of matrices can now be used as a representation of the group. However, these matrices
can be seen as a reproducible representation of the group since they are in block-diagonal form.

1 0 0 ~1/2 =3/2 0 ~1/2 3/2 0
E=[0 1 0 C,=|v3/2 12 0| C2=|-3/2 -1/2 0
00 1 0 0 1 0 0 1

-1 0 0 172 —\3/2 0 172 \3/2 0

c,=| 0 1 O o'=|-\3/2 -1/2 0] ¢ "=|3/2 -1/2 0

O 0 1 0 0 1 0 0 1

This representation can be broken down into two simpler representations. The first consists only
of the lower right block of each of the matrices above. This yields the totally symmetric
representation. The other is a representation of 2x2 matrices that are made from the upper left
block of each of the matrices above. There is one other irreducible representation for the Csy
point group. It is given in the table below without derivation, but it is easy to demonstrate that it
satisfies the group multiplication table.

Cav E Cs Cs?

I'n |A1]1 1

I |A2] 1 1 1

Is |E (1 0] —1/2 V32) (-1/2 -\3)2
0 1) (=32 -1/2) (32 -1/2

Csv Ov ov’ ov”’

I'n |Ai]1l 1 1

I |Ax|-1 -1 -1

s |E (—1 Oj [1/2 J3/2 172 —3/2
0 1) 32 -1/2) |=B/2 -1/2

The “Great Orthogonality Theorem”

One thing that is important about irreducible representations is that they are orthogonal.
This is the property that makes group theory so very useful in chemistry, because orthogonality
makes integrals zero. It’s always easier to do the integrals when orthogonality tells us the result
will be zero before doing any complicated math!

The Great Orthogonality Theorem (GOT) can be stated:
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-__h
YL, Ir®,.,.] = ﬁééé

R

(Any theorem with that many subscripts must have something truly useful to say!) In this
notation, I'i(R)mn indicates the row m, column n element of the i irreducible representation for
symmetry operation R. The m and n are needed since not all irreducible representations are
made up of just 1 and —1. Many irreducible representations need to use matrices to represent
each symmetry element. For these cases, /; gives the dimension of the matrices used in the I'i. In
our example of the Cay point group, all irreducible representations have / =1, so the GOT can be
stated more simply (for this point group specifically) as

YL@l ] = s,

Consider applying this statement to the A, and B, irreducible representations (I"2 and I'3) for the
Cay point group.

S CLM@ICR)] =T, (E)L(E)+T,(C)(C,) + T, (0,4 (0,) + T, (0, ) (0,)

= (DA +MED + EDA) + DD
=1-1-1+1
=0

Similarly, considering using the GOT on just I'4 (the By irreproducible representation) yields the
following

S IL@®IC,(R)] =T, (E),(E)+T,(C,)I,(C,) + T, (0,)T,(5,)+T,(c,)T,(c,")

=MD + (DD + EDED + M)
=1+1+1+1
=4

Recall that the order of the group (h) is 4 because there are four symmetry elements in the group.

In the case of the Csy point group, there is a 2x2 matrix representation. Consider the upper right
member of each of the '3 (E) matrices (row 1, column 2) and apply the GOT to these elements
along with the elements of "1 (A1).

S ILBILR),]= M0) + M3 /2) + ()3 /2) + (1)0) + (1)(—3/2) + ()3 /2)

R

=0
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Similarly, applying the GOT to the row 1, column 1 elements of '3 (E) we see

S LRI R), 1= 0 +(=1/2)* + (=1/2)* + (=1)* + (1/2)* + (1/2)?

R
=3
=6/2
=h/l,

Now tell me . . isn’t that truly a Great Orthogonality Theorem? (Now how much would you
pay?) Once we introduce the concept of character, we will restate the GOT in terms of class
characters.

Character and Character Tables

Most summaries of group theory do not give the full matrix specifications for each
irreducible representation in each important point group. Rather, a very useful quantity is
defined, called the character. An important property that elements of the same class will share
is that they have the same character. As such, it is only necessary to show the character once for
each class of operations in the group.

The character of an element is given by the sum of the diagonal elements of the matrix used to
represent the symmetry operation.

Xi (R) = Zri (R)mm

Csy E Cs Ov
A1 1 1 1
A2 1 1 -1

E 1 0 cos(2z/3) —sin(27/3) 1 0
0 1 sin(27/3) cos(2z/3) 0 -1
To evaluate the characters of each of the classes within each irreproducible representation, we

need only generate a representation for one operation within each class. The three irreducible
representations for some characteristic operators in each class can be expressed as follows:

Using the expressions above, the character table for the Csy group can be expressed as

Csv |E|2Cs |30y
A1 1 1 1
A2 1 1 -1
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Note that the character of the identity element is always given as the dimension of the matrices
used in the irreducible representation.

X(E)=1,

The GOT can be expressed in terms of characters.

D xRz, (R) = h,

This statement has a number of important and useful properties and consequences. One
relationship deals with the sum of the squares of the characters of the identity elements.

Z[;a (E)} =h

These expressions can be used to find and verify the characters for other point groups. For
example, consider the partial character table for the point group Cay.

A typical kind of exam or quiz question might be to fill in the missing values. In this case, all of
the values are missing! So let’s tackle the problem based on what we know from definitions, and
complete the problem by using of the GOT.

Cowv | E | 2C4 | C2|206v ]| 204
A1
A2
B1
B2
E

First off, the order of the group is h = 8. Second, every group has a totally symmetric
representation. This is the A representation and has members that are all 1. Let’s fill that in
(using red for clarity.)

Cou|E | 2C4 | C2|20v | 204
A1 1 1 1 1 1
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Additionally, we can fill in the column for the identity element. All of the A and B

representations are singly degenerate, and the E representation is doubly degenerate. So using
the expression

YLn®F =

That yields the following (shown in red):

Cov|E | 2C4| C2|20v | 204
A1 1 1 1 1 1
Az 1
B1 1
B2 1
E 2

And it clearly satisfies

2l@®F =+ @'+ @+ 1) + @)
8=}
Now using the definition that A representations have a character of 1 for the (are symmetric with

respect to) the principle rotation axis and B representations have a character of —1 for (or are
antisymmetric with respect to) the principle axis rotation. Thus, we can fill in

Cov | E |2C4 | C2|20v]| 204
A1 1 1 1 1 1
Az 1 |
B1 1 -1
B2 1 -1
E 2 ?

But should we do about the character of the C4 operation under the irreducible doubly degenerate

representation E? One solution comes from another important consequence of the GOT. This
can be stated as

Zli(Rm)Zi(Rn) = hamn

Using this relationship, we can solve for the character of the C4 operation under the E irreducible
representation.
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DA ACAEDIAC) PEA(CA)
=2+ 2D+ 2D +2(D)(-1)+2(2)x =0
The only value of x that will satisfy this expression is x = 0. We can enter this value and also

apply the definitions that the A and B representations are symmetric with respect to the oy
operation and the A> and B> representations are antisymmetric with respect to Gy.

Cov|E |2Cs | C2|20v| 204
Al | 1 1 1 1 1
Ay | 1 1 -1

B | 1 -1 1

B2 1 -1 -1

E 2 0

Again, the question mark can be removed as above.

PR AT ACOHED WA PFACH)
=2+ 2D+ 2@ +2(H(-D+2(2)x=0
Once again, as luck would have it, the only value of x that satisfies the equation is x = 0. Now,
we can apply the GOT to the representations for A1, and A» to generate an equation with two

unknowns to determine the characters of C; and oq4 for representations A, and B;. We can solve

it because we know x and y can only be 1 or —1. (These are the only values possible for singly
degenerate representations.)

Zli(R)Zj(R) = N(E) 1, (E)+2x1,(C)x,(C) + -

=D +2(H)D)+Dx+2(D)(DH+2(1)y =0

=l+x+2y=0
Cov | E |2C4 | C2|20v | 204
A1 1 1 1 1 1
Az | 1 1 1 -1 -1
Bi 1 -1 1
B | 1 -1 -1
E 2 0 0

The only combination that works is x =1 and y = -1. The character table now looks as follows:

Completion of the rest of the character table is left as an exercise.
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Direct Products

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude
squared of the transition moment matrix element.

Intensity oc ‘ I (') ,Zz(t//")dz"2

By knowing the symmetry of each part of the integrand, the symmetry of the product can be
determined as the direct product of the symmetries of each part (y’)", (y”’) and p. This is
helpful, since the integrand must not be antisymmetric with respect to any symmetry elements or
the integral will vanish by symmetry. Before exploring that concept, let’s look at the concept of
direct products.

This is a concept many people have seen, in that the integral of an odd function over a symmetric
interval, is zero. Recall what it means to be an “odd function” or an “even function.

Symmetry definition Integreals
Even f(-x) = f(x) j F(x)dx = 2[0“ £(x)dx
0dd f(-x) = -f(x) j F(x)dx=0

Consider the function f(x) = (x3 — 3x)e”‘2 . A graph of this function looks as follows:

15 -
1 )= =3xk™
08
T 0 T T T
3 2 1 ( 1 2 3
05 |
_1 m
15

One notes that the area under the curve on the side of the function for which x > 0 has exactly the
same magnitude but opposite sign of the area under the other side of the graph. Mathematically,
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[ rde={" fede+ [ fod

=— j: F(x)dx + jo" F(x)dx
=0

It is also interesting to note that the function f(x) can be expressed as the product of two
functions, one of which is an odd function (x” —3x ) and the other which is an even function (

e ). The result is an odd function. By determining the symmetry of the function as a product
of the eigenvalues of the functions with respect to the inversion operator, as discussed below,
one can derive a similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator
(in one dimension) affects a change of sign on x.

if (x)= f(-x)

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either
+1 or —1. For the function used in the previous example,

S (x) = g(x)h(x)
where
g(x)=x"-3x and h(x) = e

Here, g(x) is an odd function and h(x) is an even function. The product is an odd function. This
property is summarized for any f(x)= g(x)h(x), in the following table.

g h) f(x) | ig)=_gx) h=_hx fx)=_fx)

even | even | even 1 1 1
even | odd odd 1 -1 -1
odd odd even -1 -1 1

Note that the eigenvalue (+1 or —1) is simply the character of the inversion operation for the
irreducible representation by which the function transforms! In a similar manner, any function
that can be expressed as a product of functions (like the integrand in the transition moment
matrix element) can be determined as the direct product of the irreducible representations by
which each part of the product transforms.

Consider the point group Cyy as an example. Recall the character table for this point
group.
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Cy |E | C|ov| o

A1 1 1 1 1 z x2-y?, 7
A | 1 1 | -1 -1 R: Xy
Bi1 1 | -1 1 -1 X Ry XZ
B | 1] -1]|-1 1 y Rx yz

The direct product of irreducible representations can by the definition
X proa (R) = 2:(R)® 7 ,(R)
So for the direct product of B1 and Ba, the following table can be used.

Cav E|C|ov| o
B1 1 -1 1 -1
1
1

B2 -1 ] -1 1
B1®B: 1 -1 -1

The product is actually the irreducible representation given by A»! As it turns out, the
direct product will always yield a set of characters that is either an irreducible representation of
the group, or can be expressed as a sum of irreducible representations. This suggests that a
multiplication table can be constructed. An example (for the Cay point group) is given below.

Studying this table reveals some useful generalizations. Two things in particular jump
from the page. These are summarized in the following tables.

A|B 1|2
A |lA|B 1|1 (2
B |B|A 2 |1

Cw |A1| A2 | B1 | B2
A1 |Ai| Ao | Bl | B
A2 |A2| A | B2 | Bs
Bi |Bi| B | Al | A
B: | B2 | Bi | A2 | A

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric
symmetric*antisymmetric = antisymmetric
antisymmetric*antisymmetric = symmetric

Noting that A indicates that an irreducible representation is symmetric with respect to the Cz
operation and B indicates that an irreducible representation is antisymmetric . . and that the
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subscript 1 indicates that an irreducible representation is symmetric with respect to the oy
operation, and that a subscript 2 indicates that an irreducible representation is antisymmetric . .
the rest seems to follow! Some point groups have irreducible representations use subscripts g/u
or primes and double primes. The g/u subscript indicates symmetry with respect to the inversion
(7) operator, and the prime/double prime indicates symmetry with respect to a ¢ plane (generally
the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for
products involving doubly degenerate representations? As an example, consider the Csy point

group.

Cww |E| 2Cs 3 ov

Al |1 1 1 z

A2 |1 1 -1 Rz

E 2] 1 ] 0 | ®xy | RoRry

Consider the direct product of A and E.

Ciw |E| 2Cs3 | 30v
A2 1 1 -1
E 2 -1 0
A2QE | 2 -1 0

This product is clearly just the E representation. Now one other example — Consider the product
E®E.

Csv E| 2C;s 3 ov
E 2 -1 0
E 2 -1 0

EQ®E | 4 1 0

To find the irreducible representations that comprise this reducible representation, we proceed in
the same manner as determining the number of vibrational modes belonging to each symmetry.

N, = é (D) + 21D +31)(0)]=1
N, = % [()(4) + 201 +3(~1)(0)] = 1

Ny = é [(2)(4) +2(=D)(1) +3(0)(0)] =1

This allows us to build a table of direct products. Notice that the direct product always has the
total dimensionality that is given by the product of the dimensions.
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Cw | A1 | A2 E
Al | A | A E
A2 | A | Al E
E E E | A+ Ax+E

The concepts developed in this chapter will be used extensively in the discussions of
vibrational, rotational and electronic degrees of freedom in atoms and molecules.
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Problems

1. Find the symmetry elements and point groups for the following molecules
a. SF4

CHCI3

Pyridine

Naphthalene

IClIs

PCls

me o o

2. Consider diazine, which has three isomers. Determine which isomer(s) has/have Cay
symmetry and which has/have D2y symmetry.

3. Complete the following character table.

1 1 1 1 1

| E 2A 2B C 3D  3F
1
1 1 1 1 -1 -1

A
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B 1
B> 1 -1 1 -1 -1 1
E1 1
E -1

Ca | Ax  B. E. A B, E,

Ag | Ag Bg Eg Ay By Eu

Bg | Bg

E, | E, AgtBg+Eq AutButEa
Au Ay Ag

Bu Bu

Eu E.

5. Consider the following group multiplication table. Separate the operations into classes.

g liwii@lisciie-gles

QW |||
Q=g |m|wE | > | >
OQ| iy mw|w
sdicdislivliciiel (@
eelicsibgicloliv] lw
eslieglivel i@l iwaiec] lev

6. Demonstrate that the A2, Bi, B> and E irreducible representations are orthogonal to the A
irreducible representation under the point group Cay.

7. A point group has 8 operations which fall into five classes. How many irreducible
representations will it have? How many will be singly degenerate? How many will be
doubly degenerate?
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