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Chapter 7: Approximate Methods 
 

The previous chapters all dealt with problems that can be solved analytically.  However, 

there are many problems that are of chemical interest that cannot be solved exactly.  For these 

problems, we must employ some methods that will approximate a correct and complete solution.  

Two such methods will be discussed in this chapter. 

 

 

Perturbation Theory 
 

Oftentimes, a system represents only a small difference from an exactly solvable system.  

In these instances, perturbation theory can be used to describe the system.  To use perturbation 

theory, one must separate the Hamiltonian into two parts: one for which the solution is known (
)0(Ĥ ) and the other part which will represent the perturbation to the system (

)1(Ĥ ). 
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The solution for the unperturbed system is known. 
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The energy levels and wavefunctions for the perturbed system are determined by 

applying a series of corrections (referred to as first order, second order, etc.) 
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Oftentimes only the first and second order corrections are needed to give a reasonable 

description of the system.  The first order correction to the energy is given by 
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The second order correction to the energy depends on the first order correction to the 

wavefunctions. 

 

=  dHE nnn

)1()1()0()2( ˆ  

 

The formula for generating the first order corrections to the wavefunctions is given by 
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Substitution into the expression for En
(2) yields 
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Variational Method 
 

The variational method is based on the Variational principle which says that a 

wavefunction that is not the true wavefunction will always yield a value for the energy that is 

greater than the true ground state energy of the system.  This principle can be proven using the 

superposition theorem that was previously discussed. 

 

Proof: 

 

Assume a trial wavefunction (x) describing a particle in a box, that can be expressed as a linear 

combination of the normal particle in a box wavefunctions. 
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Assuming (x) is normalized, the expectation value of energy <E> is obtained from the 

expression 
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Substituting the expression for (x) from above 
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Noting that  

 

nnn EH  =ˆ  

 

Substitution yields 
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Gathering terms, one obtains 
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The Kronecker delta will destroy one of the summations since it will pick out only one value to 

be non-zero. 
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Thus if any components of the linear combination have a non-zero contribution (cn ≠ 0 for n > 1) 

the expectation value has to be larger than E1. 

 

 

 The Variational principle can be used to determine reasonable trial wavefunctions () 

based on a set of approximate wavefunctions (n).  This is done by assuming the trial 

wavefunction can be expressed as a linear combination of the approximate wavefunctions  
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and then determining the contribution to the trial function by minimizing the energy with respect 

to the coefficients (cn) in the expansion. 
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This will produce n equations with n unknown values of cn which can be simultaneously 

solved to yield the optimal values of cn.  This methodology is used to a great extent in 

computational chemistry methods. 

 

Example: What is <E> for a system with the following wavefunction that approximates 1(x) 

for a particle in a box? 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Approximate Methods © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

196 

 

 

( )xax
a

x −=
5

30
)(  

 

Solution: 

 

The wavefunction is a reasonable, but not perfect, approximation of the n=1 level of a particle in 

a box. 

 

The expectation value of energy is found in the usual 

manner. 
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This result is slightly larger than h2/8ma2 since 5/(2)2 = 0.127 and 1/8 = 0.125. 

 

In the variational method, an approximate form of a wave function can be used 

 

 

 

Vocabulary and Concepts 
perturbation theory .................................. 169 variational method .................................. 170 

 

Problems 
 

1. Consider a particle of mass m in a box defined between x = 0 and x = a,  that is prepared 

in the n = 1 state. If the wavefunction is approximated by 
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𝜓(𝑥) = √
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a. Show that the expectation value of <E> exceeds E1 for a particle in a box. 

b. By what percentage does the approximate energy exceed that of the n = 1 energy? 
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