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Chapter 6: The Hydrogen Atom 
 

The hydrogen atom problem was one that was very perplexing to the pioneers of quantum 

theory.  While its quantized nature was evident from the known atomic emission spectra, there 

were no models that could adequately describe the patterns seen in the spectra.  

 

Older Models of the Hydrogen Atom 
 

 Two of the most important (historically) models of the hydrogen atom and it’s energy 

levels/spectra were proved by Johannes Balmer, a high school teacher, and Niels Bohr, a Danish 

physicist. Balmer’s model was a completely empirical fit to existing data for the emission 

spectrum of hydrogen, whereas Bohr provided an actual theoretical underpinning to the form of 

the model which Balmer derived. In this section, we will discuss the development and 

ramifications of these two models. 

Balmer’s Formula 
 

Balmer (Balmer, 1885) was the first to provide an empirical formula that gave a very 

good fit to the data, but offered no theoretical reasoning as to why the formula had the simple 

form it did.  Balmer felt, however, that despite the lack of a theoretical foundation, such a simple 

pattern could not be the result of an “accident”. 

 

 
 

Balmer suggested the formula  
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to calculate the wavelengths () of the lines in the visible emission spectrum of hydrogen.  In this 

formula, G = 3647.053 Å, which is the series limit (depicted as H∞ in the figure above.)  Balmer 
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considered this to be a “fundamental constant” for hydrogen and fully expected other elements to 

have similar fundamental constants. 

 In modern terms, Balmer’s formula has been extended to describe all of the emission 

lines in the spectrum of atomic hydrogen. 
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where nl and nu are integers with nl < nu.  RH is the Rydberg constant for hydrogen and has the 

value 

 

RH = 109677 cm-1 

 

The job of subsequent investigators was to provide a theory that explained the form of the 

Rydberg Equation shown above and to correctly predict the value of the Rydberg Constant. 

 This model describes all known series of emission lines in the spectrum of atomic 

hydrogen.  Each series is characterized by the lower state quantum number.  The following table 

summarizes the names of these series. 

 

nl Name Region 

1 Lyman Vacuum Ultraviolet 

2 Balmer Visible/Ultraviolet 

3 Paschen Near Infrared 

4 Brachen Infrared 

5 Pfund Far Infrared 

 

The Bohr Model 
 

Niels Bohr (Bohr, 1913) was the first person to offer a successful quantum theory of the 

hydrogen atom in his 1913 paper.  He was later awarded the Nobel Prize in Physics in 1922 for 

his contributions to the understanding of atomic structures (as well as many other significant 

contributions.)  And while the Bohr model has significant shortcomings in terms of providing the 

best description of a hydrogen atom, it still provides the basis (a “solar system model”) for how 

many people view atoms today.   

Bohr’s model was mostly an extension of the Rutherford model of an atom, in which 

electrons exist in a cloud surrounding a dense, positively charged nucleus.  The Bohr model 

suggested a possible structure to this cloud in an attempt to give an explanation of the empirical 

formula presented by Balmer.  The strength of the Bohr model is that it does provide an accurate 

prediction not only of the form of Balmer’s formula, but also of the magnitude of the Rydberg 

constant that appears in the formula. 

Bohr’s approach was to balance the electrostatic attractive force between an electron and 

a positively charged nucleus, with the centrifugal force the electron feels as it orbits the nucleus 
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in a circular orbit.  He derived these orbits by making the assumption that the angular momentum 

of an orbiting electron is an integral multiple of  . 

While successful in predicting the form of the Rydberg Equation and the magnitude of 

RH, the Bohr model presented some difficulty.  First, it ignored the reality that a charged particle 

orbiting another (oppositely) charged nucleus would see its orbit decay over time, eventually 

colliding with the nucleus.  This clearly does not happen with hydrogen!  Also, the Bohr model 

was not extendable to larger atoms.  Quantum mechanics would have to address these problems, 

while also providing the kind of explanations for the Rydberg Equation provided by Bohr. 

 

The Quantum Mechanical H-atom 
 

 As is so often the case for quantum mechanical systems, the story of the hydrogen atom 

begins with writing down the Hamiltonian describing the system. 

 

The Potential Energy and the Hamiltonian 
 

The time-independent Schrödinger equation has the following form. 

 

𝐻̂𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) 

 

[−
ℏ2

2𝜇
∇2 + 𝑈(𝑟)] 𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) 

 

 

where  is the reduced mass for the electron/nucleus system.  The Laplacian operator has the 

form 
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The potential energy is given by the electrostatic attraction of the electron to the nucleus. 

 

𝑈(𝑟) = −
𝑍𝑒2

4𝜋𝜀0𝑟
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where Z is the charge on the nucleus in electron charges (also given by the atomic number), e is 

the charge on an electron and 0 is the vacuum permittivity.   

 
The 1/r dependence means that the electrostatic attraction diminishes as the distance between the 

electron and the nucleus is increased.  The potential energy approaches zero  as r goes to ∞, at 

which point the atom ionizes. 

 Putting this all together allows the Hamiltonian to be expressed as 
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The wavefunctions can be expressed as a product of a radial part and an angular part since the 

Hamilton is separable into these two parts. 
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The angular part of the function, ( ) ,lm

lY  are the spherical harmonics and are eigenfunctions of 

the 
2L̂  operator.  Substitution into the Schrödinger equation yields 
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Since the spherical harmonics are eigenfunctions of the 
2L̂  operator, the following substitution 

can be made. 
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After making this substitution and dividing both sides by ( ) ,lm

lY , we get 
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However, since l shows up in the equation in which we are solving for the radial wavefunctions 

R(r), it is not to be unexpected that the solution to the radial part of the equation will place new 

constraints on the quantum number l.  In fact, the radial wavefunctions themselves depend on l 

and a principle quantum number n. 

 

The Energy Levels 
 

 Applying the boundary condition that the radial wavefunction R(r) must vanish as r → ∞, 

the only wavefunctions that behave properly have the following eigenvalues 
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Notice also that this expression vanishes as n approaches ∞, which is the ionization limit of the 

atom.  Also, since the energy expression depends only on n (and not on l and ml) it is expected 

that there will be a great deal of degeneracy in the wavefunctions. 

Taking differences between two energies levels (to derive an expression for the energy 

differences that can be observed in the spectrum of hydrogen), it is seen that 
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which is exactly the form of the Rydberg Equation.  Now dividing both sides by hc in order to 

convert from energy units to wavenumber units 
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using the reduced mass for the hydrogen atom and a nuclear charge of +1.  So this model also 

predicts the correct value for the Rydberg constant RH. 

 

The Rydberg Constant for Heavier Nuclei 
 

The expression for the Rydberg constant is 
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which has a value of RH = 109677.581 cm-1.  In this expression,  is the reduced mass of the 

electron-proton system in the hydrogen atom.  But what happens when the mass of the nucleus is 

extremely large?  First, consider the reduced mass. 
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Where me is the mass of an electron and mN is the mass of the nucleus.  In the case that the 

nuclear mass is extremely large compared to the mass of an electron, the total mass is 

approximately equally to the mass of the nucleus. 

 

(me + mN)   mN 

 

In this case, the reduced mass becomes 
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And the Rydberg constant expression comes to 
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where R∞ indicates the Rydberg constant for an infinite mass nucleus atom.  It is this value that is 

usually found in tables of physical constants. 

But for lighter atoms, such as hydrogen, the value of the Rydberg constant deviates form 

this value.  In fact, hydrogen shows the largest deviation for any atom, given that it has the 

lightest nucleus.  Compared to experimental precision, this deviation is important (even for 

atoms where the mass of an electron is only 1 x 10-6 times that of the nucleus!) if one hopes to fit 

data to experimental precision. 

To address this problem, we look back to the expression for the Rydberg constant for an 

arbitrary mass nucleus, RM. 
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Clearly as the mass of the nucleus (mN) becomes larger, the value of RM will approach that of R∞ 

asymptotically. 

 

The Wavefunctions 
 

The hydrogen atom wavefunctions (r,,) can be expressed as a product of radial and 

angular functions. 

 

𝜓𝑛𝑙𝑚𝑙
(𝑟, 𝜃, 𝜙) = 𝑅𝑛𝑙(𝑟)𝑌𝑙

𝑚𝑙(𝜃, 𝜙) 

 

The angular part is simply the spherical harmonics that were described in Chapter 5, depend on 

the quantum numbers l and ml.  More details of how the spherical harmonics are generally 

presented as H-atom angular functions is discussed in section 3.i.  The radial part of the wave 

functions, Rn
l(,) will be described in a later section. 

 

The Angular Part of the Wavefunctions 
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 Each orbital wave function can be designated with a letter than indicates the value of l as 

assigned in the following table. 

 

l Designation 

0 s 

1 p 

2 d 

3 f 

 

The angular parts of the wavefunctions are given by the spherical harmonics.  After 

taking linear combinations to eliminate the imaginary part of the wave functions, the familiar 

shapes of s, p, d and f orbitals are generated.  For example, the px and py orbitals are generated as 

linear combinations of the p-1 and p1 orbitals. 
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Similar linear combinations are used to generate the dx2-y2, dxy, dyz and dxz functions.   

 

( ) ( )

( ) ( )2

2

2

2

2

2

2

2

1

2

1

2

1

2

1

2

0

2

2

1

2

1

2

1

2

1

22

2

−

−

−

−−

+−=−−=

+−=−−=

=

YY
i

dYYd

YY
i

dYYd

Yd

yxxy

yzxz

z

 

 

There are multiple choices for how to take linear combinations to generate the f orbital functions 

(the best choice being determined by the geometry of the complex in which an f-orbital 

containing atom exists), so these are rarely shown in textbooks!  The tables below give the 

angular parts of s, p and d hydrogen atom orbitals.  The linear combinations shown above have 

been used to eliminate the imaginary parts of the wave functions.  The result is what is usually 

plotted for the shapes of these orbitals. 
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These functions generate the familiar angular parts of the hydrogen atom wavefunctions.  Some 

depictions are shown in the figure below. 
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The Radial Part of the Wavefunctions 
 

The radial part of the wavefunction has three parts. 1) a normalization constant, 2) an 

associated Laguerre Polynomial and 3) an exponential part that ensures the wavefunction 

vanishes as r → ∞.  The associated Laguerre polynomials are derived from the Laguerre 

polynomials (much like the associated Legendre Polynomials were from the Legendre 

polynomials.)  The Laguerre polynomials can be derived from the expression 
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The first few Laguerre polynomials are given by 
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A recursion formula for these functions is given by 

 

𝐿𝑛+1(𝑥) = (2𝑛 + 1 − 𝑥)𝐿𝑛(𝑥) − 𝑛2𝐿𝑛−1(𝑥) 

 

The associated Laguerre polynomials can be generated using the expression 
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This expression is used to generate an associated Laguerre polynomial of degree n- and order 

.  The functions of interest to the hydrogen atom radial problem are the associate Laguerre 

polynomials of degree n-l-1 and order 2l+1.  It can be shown that these functions can be 

generated from the relationship 
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Note that when n-l-1 is less than zero, the functions vanish.  This leads to the restriction on the 

quantum number l that comes from the solutions to the radial part of the problem. 
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The first few associated Laguerre polynomials that appear in the hydrogen atom wavefunctions 

are shown below. 
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Notice that if (2l+1) exceeds (n+l), the derivative causes the function to go to zero, as was the 

case for the associated Legendre Polynomials when |ml| exceeds l.  This provides the constraint 

on l that was expected to be found in the solution to the radial part given that l shows up in the 

equation to be solved. 

 

l ≤ n – 1 

 

 Typically, x is replaced by a new function in r, .   is defined as follows: 
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where a0 is the Bohr radius.  The overall expression for the radial wavefunction is given as 

follows: 
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The first several radial wavefunctions are given below. 
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where  = Zr/a0.  a0 is the Bohr radius, which has a value of 5.291 772 49 x 10-11 m. 

 

Example: What is the expectation value of r for the electron if it is in the 1s subshell of an H 

atom? 

 

Solution: The expectation value can be found from 

 

〈𝑟〉 = ∫ 𝜓1𝑠
∗ ∙ 𝑟 ∙ 𝜓1𝑠 𝑟2𝑑𝑟

∞

0

 

 

Where r2dr comes from the r portion of the volume element dx dy dz after it has been 

transformed into spherical polar coordinates. 

 

Substituting the wavefunction from above yields 

 

〈𝑟〉 = ∫ [2 (
1

𝑎0
)

3
2

𝑒
−

𝑟
𝑎0] 𝑟 [2 (

1

𝑎0
)

3
2

𝑒
−

𝑟
𝑎0] 𝑟2𝑑𝑟

∞

0

 

 

This expression simplifies to 

 

〈𝑟〉 = 4 (
1

𝑎0
)

3

∫ 𝑟3 [𝑒
−

2𝑟
𝑎0] 𝑑𝑟

∞

0

 

 

A table of integrals shows 

 

∫ 𝑥𝑛𝑒−𝑎𝑥
∞

0

𝑑𝑥 =
𝑛!

𝑎𝑛+1
 

 

Substituting the above integral into the general form results in 

 

〈𝑟〉 = 4 (
1

𝑎0
)

3

(
6

(
2

𝑎0
)

4) 

=
24

16
(

1

𝑎0
3) (𝑎0

4) 

=
3

2
𝑎0 
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Example: What is the most probable value of r for the electron in a hydrogen atom in a 1s 

orbital? 

 

Solution: The most probable value of r will be found at the maximum of the function  

 

𝑃(𝑟) =  𝑟2[𝑅(𝑟)]2 

 

This can be found by taking the derivative and setting it equal to zero. First, let’s find the 

probability function 

 

 𝑃(𝑟) = 𝑟2  [2 (
1

𝑎0
)

3
2

𝑒
−

𝑟
𝑎𝑜]

2

=
4

𝑎0
3  𝑟2 𝑒

−
2𝑟
𝑎0 

 

At the maximum, the derivative is zero. 

 
𝑑

𝑑𝑟
𝑃(𝑟) = 0 

 

So 

 

𝑑

𝑑𝑟
[

4

𝑎𝑜
3  𝑟2 𝑒

−
2𝑟
𝑎0] =

4

𝑎3
3 (2𝑟 𝑒

−
2𝑟
𝑎0 −

2

𝑎0
𝑟2 𝑒

−
2𝑟
𝑎0) = 0 

 

After dividing both sides by 
4

𝑎0
3, and placing the right-hand term on the other side of the equals 

sign, this simplifies to 

 

2𝑟 𝑒
−

2𝑟
𝑎0 =

2

𝑎0
𝑟2 𝑒

−
2𝑟
𝑎0 

 

This is further simplified by dividing both sides by 𝑒
−

2𝑟

𝑎0: 

 

2𝑟 =
2

𝑎0
 𝑟2 

 

The rest of the algebra is straight forward (actually, all of the algebra was straight-forward, but 

who is counting?) 

 

𝑟 = 𝑎0 
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Nodes 
 

A hydrogen atom wavefunction can have nodes in either the orbital (angular) part of the 

wavefunction or the radial part.  The total number of nodes is always given by n – 1.  The 

number of angular nodes is always given by l.  The number of radial nodes, therefore, is 

determined by both n and l.  Consider the following examples. 

 

 nodes 

 radial angular total 

1s 0 0 0 

4p 2 1 3 

5f 1 3 4 

2d  - - 

2p 0 1 1 

 

Notice that it is impossible to form a 2d wavefunction as it violates the relationship that 

 

l  ≤ n – 1 

 

causing the radial wavefunction to vanish.  This is easy to see as the combination of n = 2 and l = 

3 implies that there are -1 radial nodes, which is clearly impossible. 

 

Shells, Subshells and Orbitals 
 

It is convenient to name the different subdivisions of the electronic structure of a 

hydrogen atom.  The subdivisions are based on the quantum numbers n, l and ml.  A shell is 

characterized by the quantum number n. (Examples: the n=2 shell or the n=4 shell.)  A subshell 

is characterized by both the quantum number n and l.  (Examples: the 2s subshell or the 3d 

subshell.)  An orbital is characterized by the quantum number n, l, and ml. (Examples: the 2p0 

orbital or the 5f1 orbital.)  It should be noted that an orbital can also be constructed from a linear 

combination of other orbitals! (Example: the 2px orbital or the 3dxy orbital.) 

 

Degeneracy 
 

The hydrogen atom wavefunctions have high degeneracies since the energy of a given 

level depends only on the principle quantum number n.  As such, all wavefunctions with the 

same value of n will have the same eigenvalue to the Hamiltonian, and are degenerate.  Recall 

the following relationships: 

 

l ≤ n-1  and    |ml| ≤ l 
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These relationships can be used to fill in the following table that indicates the 

degeneracies of the hydrogen atom energy levels. 

 

Subshell n l ml ms 
degeneracy 

orbital total 

1s 1 0 0 +½, -½ 1 2 

2s 
2 

0 0 +½, -½ 
4 8 

2p 1 +1, 0, -1 +½, -½ 

3s 

3 

0 0 +½, -½ 

9 18 3p 1 +1, 0, -1 +½, -½ 

3d 2 +2, +1, 0, -1, -2 +½, -½ 

4s 

4 

0 0 +½, -½ 

16 32 
4p 1 +1, 0, -1 +½, -½ 

4d 2 +2, +1, 0, -1, -2 +½, -½ 

4f 3 +3, +2, +1, 0, -1, -2, -3 +½, -½ 

 

It is clear that the total degeneracy of a shell is given by 2n2. 

 

The Overall Wavefunctions 
 

The total wavefunction, including both angular and radial parts, for hydrogen-like atoms 

is given by 

 

( ) ( ) ,l

l

m

lnlnlm YrR=  

 

The first few hydrogen atom orbital wavefunctions are given in the table below. 

 

Shell Subshell ml Wavefunction  

1 1s 0 100 




−











e

a

Z
2/3

0

1
 

2 

2s 0 200 ( ) 2/

2/3

0

2
32

1 


−−









e

a

Z
 

2p 

0 10 )cos(
32

1 2/

2/3

0




−











e

a

Z
 

±1 21±1 
 



iee
a

Z −











)sin(

64

1 2/

2/3

0
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Rydberg Spectra of Polyelectronic Atoms 
 

To a very good approximation, the electronic spectra of highly excited atoms look a lot 

like the spectrum of hydrogen.  These highly excited states of atoms are called “Rydberg States” 

and to a good approximation, the excited electron in a Rydberg state “feels” the nucleus of the 

atom as a point charge.  As this occurs, the atom comes to be in a state that looks much like a 

state in a hydrogen-like atom, with a heavy nucleus that has a +1 charge (the residual ion if the 

excited electron is removed. 

 
 In cases such as this, the energy levels of the excited electron can almost be treated using 

the Rydberg formula proposed by Balmer, and with the correct Rydberg constant (RM) and 

nuclear charge.  The formula does not work perfectly, but can be forced to fit the data by 

introducing a “fudge factor.” 

 

Approximating a Hydrogen-like Atom 
 

Scientists like to force the descriptions of real systems in terms of the limiting ideal cases 

with slight perturbations.  In the case of real atoms, there are two common ways that this is 

typically done.  One is to fudge the nuclear charge and the other is to fudge on the principle 

quantum number. 

Shielding and Effective Nuclear Charge 
 

One “fudges” the nuclear charge by noting that the excited electron will not “see” the 

inner core ion as a point charge with a +1 charge.  Instead, it will feel the full charge of the 

nucleus, but shielded by the electrons that remain in the ion.  Thus, the effective nuclear charge 

(Z*) can be used. 

( ) 












−=

22

2* 11~

ul

M
nn

RZ  

where Z*, the effective nuclear charge, is defined by 
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Z* = Z –  

 

where  is the shielding constant and is determined by adding the effects of each of the inner 

electrons.  The trouble with this approach is that the degree of shielding is dependent on the 

excitation level of the excited electron.  The shielding constant  should reach a limiting value 

for highly excited Rydberg states of the atom. 

 

Quantum Defect and the Effective Principle Quantum Number 
 

Another approach is to “fudge” on the principle quantum number of the excited electron.  

The utility of using this method is that there is only one electron to treat, rather than a slew of 

electrons in the core ion, the shielding of each will be variable.  In this method, the effective 

principle quantum number n* is defined as 

 

n* = n –  

 

where  is the quantum defect.  The quantum defect has the useful property that it reaches a 

constant value for electrons in atoms at high levels of excitation. 

 

The ionization potential 
The ionization potential of an atom I defined by the enthalpy change at 0 K for the following 

reaction 

 

M → M+ + e-  H = IP 

 

If one pictures ionization as a series of excitations of the electron to be removed through a set of 

Rydberg states, one can deduce the ionization potential of an atom.  (This is how atomic 

spectroscopy is used to determine highly accurate ionization potentials.) 

Using the effective principle quantum number n*, the energy levels can be expressed as 

 

2* )(n

R

hc

IP

hc

E M−=  

 

 Consider the Rydberg series in 23Na, the first few levels of which is given below.  For Na, 

the Rydberg constant can be calculated 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: The Hydrogen Atom © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

189 

 

( )

1

1

2631

26

698.109734

316.109737
1081763.310109.9

1081763.3

−

−

−−

−



=










+
=












+
=

cm

cm
kgxkgx

kgx

R
mm

m
R

Nae

Na

Na

 

 

Based on a guess of the ionization potential, an effective principle quantum number can be 

calculated for each level from 

 

EIP

R
n Na

−
=*

 

 

From n*, one can calculate the quantum defect () and adjust the guess of the ionization potential 

until  becomes constant for large n. 

 

IP = 41449.48 cm-1  RNa =  109734.7 cm-1 

level n  n* Energy (cm-1) 

3p 3 0.883 2.117 16956.17 

4p 4 0.867 3.133 30266.99 

5p 5 0.862 4.138 35040.38 

6p 6 0.860 5.140 37296.32 

7p 7 0.858 6.142 38540.18 

8p 8 0.858 7.142 39298.35 

9p 9 0.857 8.143 39794.48 

10p 10 0.857 9.143 40136.80 

11p 11 0.857 10.143 40382.92 

12p 12 0.857 11.143 40565.78 

13p 13 0.857 12.143 40705.34 

14p 14 0.856 13.144 40814.27 

15p 15 0.856 14.144 40900.91 

16p 16 0.857 15.143 40970.97 

17p 17 0.857 16.143 41028.41 
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This method is extremely sensitive and can be used to determine very precise values of 

ionization potentials for atoms.  The above result is 5.145 eV, whereas the literature value for the 

ionization potential of sodium is 5.139 eV (Webelements).  The slightly large value determined 

from this data is a consequence of only using a limited number of excited levels, and not the 

highest energy levels, which behave most Rydberg-like.  A close examination of the data 

actually reveals that there is some curvature to the  vs n curve at high values of n.  Since the 

curve is actually increasing at the larger values of n, it is an indication that the guess for the 

ionization potential is slightly high – a fact that is consistent with the literature value! 
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Quantum Defect for Rydberg Levels of Sodium
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Problems 
 

1. Calculate the finite-mass Rydberg constant (RM) for  

a. H 

b. D 

c. 7N 

d. 11Na 

 

2. The 1s orbital wavefunction for hydrogen is given by 

 

𝜓1𝑠 =
1

√𝜋
(

1

𝑎0
)

3/2

𝑒
−

𝑟
𝑎0 

 

a. Show that this wavefunction is normalized. 

b. Find the expectation value of r in units of a0 (the Bohr Radius.) 

 

3. Show that the 2s wavefunction for hydrogen is 

a. Normalized 

b. An eigenfunction of the Hamiltonian. (What is the eigenvalue?) 

 

4. The Laguerre Polynomial L1(x) is given by 

 

𝐿1(𝑥) = −𝑥 + 1 

 

 The Associated Laguerre polynomials are generated from the relationship 

 

𝐿𝑛
𝛼 (𝑥) =

𝑑𝛼

𝑑𝑥𝛼
𝐿𝑛(𝑥) 

 

a. Show that the Associated Laguerre polynomials 𝐿1
0(𝑥) = −𝑥 + 1, 𝐿1

1 (𝑥) = −1, and    

𝐿1
2(𝑥) = 0. (In fact, 𝐿1

𝛼(𝑥) = 0 for any choice of  >1.) 

b. Given that the Associated Laguerre polynomials used in the radial wavefunctions of 

the Hydrogen atom problem are 𝐿𝑛+𝑙
2𝑙+1(𝑥), derive a relationship between n and l that 

ensure that 𝐿𝑛+𝑙
2𝑙+1(𝑥) ≠ 0. 
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5. Using the Laguerre polynomials  𝐿2(𝑥) =
1

2
(𝑥2 − 4𝑥 + 2) and 𝐿1(𝑥) = −𝑥 + 1, show 

that 

 
𝑑

𝑑𝑥
𝐿𝑛(𝑥) =

𝑑

𝑑𝑥
𝐿𝑛−1(𝑥) − 𝐿𝑛−1(𝑥) 

 

6. Sketch the radial wavefunctions for the 1s, 2s, 2p, 3s, 3p, and 3d orbital wavefunctions of 

Hydrogen. 

 

7. Determine the number of nodes in each of the following hydrogen atom orbital 

wavefunctions: 

 

wavefunction Total nodes Angular nodes Radial nodes 

2s    

3p    

5d    

6f    

 

8. Determine the ionization potential for 3He+. 

a. Find 𝑅𝐻𝑒 for the He-3 isotope. 

b. Use the relationship  

 

𝐼𝑃 = 𝑍2𝑅𝑀 (
1

(1)2
−

1

(∞)2
) 

 

9. Based on the following data, 

find the ionization energy of 

Rb, using the fact that at 

high excitation, the quantum 

defect () becomes constant. 

 

 

 

n (for the np  5s transition) Wavenumber (cm-1) 

5 12578.950 

6 23715.081 

7 27835.02 

8 29834.94 

9 30958.91 

10 31653.85 

11 32113.55 

12 32433.50 

13 32665.03 

14 32838.02 

15 32970.66 

16 33074.59 

17 33157.54 

18 33224.83 

19 33280.13 

20 33326.13 
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