Chapter 5: The Rigid Rotor and Rotational
Spectroscopy

One of the most powerful tools for elucidating molecular structure is the analysis of
rotationally resolved molecular spectra. These can be observed in the microwave, infrared, and
visible/ultraviolet regions of the spectrum. The rigid rotor (or rigid rotator) problem provides
the idealized model that chemists use to describe the rotational motion of a molecule. In this
chapter, we will explore the quantum mechanical model of a rotating body, and apply the results
to lay the foundation for an understanding of the rotational structure in molecular spectra. We’ll
look at the shortcomings of the model when applying it to real molecules (which as we saw in
the previous chapter, do not have rigid bonds!) and apply these results to the interpretation of
pure rotational spectra (generally found in the microwave region of the spectrum) and rotation-
vibration spectra (accounting for the rotational structure that is observed in infrared spectra of
molecules.)

Spherical Polar Coordinates

The description of a rotating molecule in Cartesian

coordinates would be very cumbersome. The problem is actually Z
much easier to solve in spherical polar coordinates. Consider a
particle that is located in space at some arbitrary point (x,y,z). In (x.y.z)
spherical polar coordinates, the position of a particle is also
described by three variables, namely r, 6, and ¢. These variables are r
defined according to the diagram. The distance from the origin to
the point is specified by r. 0 gives the angle formed by the position —
vector of the point and the positive z-axis. ¢ give the angle of X ¢
rotation from the positive x-axis of the projection of the position

vector into the xy plane. The ranges of possible values for r, 6 and ¢ are given by

0<r<ow
<O0<r
0<¢<2rm

The coordinates of any point can be transformed from spherical polar coordinates to
Cartesian coordinates using the following equations.

x =rsinfcos ¢
y =rsinfsin ¢
z=rcos6
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The coordinates can be transformed from Cartesian coordinates to spherical polar coordinates by
these equations.

r=4x2+y?+z?2

0 =tan~! (%)

z
¢ = cos‘1< )

Potential Energy and the Hamiltonian

Since there is no energy barrier to rotation, there is no potential energy involved in the
rotation of a molecule. All of the energy is kinetic energy. This simplifies the writing of the
Hamiltonian.

In Cartesian coordinates, the Hamiltonian can be written

(o> o> 0°
=—— +—+
2/1[8)62 oy® 622J

2
A=-"y
2u
(1o ,0 1 o0 . 0 1 0’
= —==r’—t+————"sinf—+————
2u\r*or or r’sin@ 00 00 r’sin’ @ 0¢’

For the rigid rotor problem, r is taken to be a constant, simplifying the operator.

~ /. 1 o . ,0 1 0
H=- S| —sinf—+—; >
2ur \ sin@ 060 00 sin” 0 0¢

The expression ur? is the moment of inertia for the molecule. This value shows up often in
problems involving the rotation of a molecule.
I=pr?
While the expression for the Hamiltonian in spherical polar coordinates looks
considerably more cumbersome than the Hamiltonian expressed in Cartesian coordinates, it will
still be simpler to solve the problem describing the rotation of a molecule.
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Solution to the Schrodinger Equation

The time-independent Schrodinger equation can be written as follows.

Hy(0,4)=Ey(0,4)
” (1 O gnol 1O jw<e,¢>=Ew<e,¢>

- S sinld—+———
2ur-\ sin@ 060 00 sin” 6 0¢

Since the Hamiltonian can be expressed as a sum of operators, one in 0 and the other in ¢, it
follows that the wavefunction should be able to be expressed as a product of two functions.

v (0.9)=0(0)0(p)

Making this substitution, the equation becomes

2 [ Lo, 0, 1 & j®(9)®(¢)= EO(0)D(p)

—~ ———sinf— +—
2ur’  sin@ 00 06 sin’ @ 0¢’

With minimal rearrangement, the following result can be derived

204 no L ofo)+ X L _ag)=-2 E a(opuy)

And dividing both sides by ®(0)D(¢$) produces

ismei@(e)H 1 cp(¢)j=_2w 'E

(@(ﬁ)sin 0do do ®(p)sin? 0 dg’ n’

This expression suggests that the sum of two functions, one only in 6 and the other only in ¢,
when added together, yields a constant. As the two variables 0 and ¢ are independent of one
another, the only way this can be true is if each equation is itself equal to a constant.

1 d d
— _sin & — =_)?
nd 40 sin & 20 ®(9) 1@(9)
L4 )= —rolp)
sin? @ dg> 2

where A1 and A are constants of separation (the form of which is chosen for convenience) which
satisfy the following relationship.
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— A ==X
__ZyrzE

Rotation in the xy plane (6 = t/2)

We’ll tackle the equation in ¢ first. One way to picture this part of the equation is that it
describes the rotation of a molecule in the xy plane only (defined by 0 = nt/2.) Given this
constraint, it is clear that the sin?(@) term becomes unity, since sin(n/2) =1. The problem then
becomes

d’ __2;1r2E
g PW)=—= 5 00)

If a substitution is made for the constants on the right-hand side of the equation,

2 _ 2ur’E
E—

;=
we get

d2
d¢’

D(¢) = —m; D(¢)

which should look like a familiar problem. Instead of using sine and cosine functions this time
though, we will use an imaginary exponential function instead.

o(g)= 4, 0"

The boundary condition for this problem is that the function ®(¢) must be single valued.
Therefore

D(¢) = (g +27)
So

im¢ imy (¢+27)
A4,e"" =4, e"

m;

Dividing both sides by 4, and expressing the second exponential as a product yields
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oMb — it gim 27
| = ™27
Using the Euler relationship
e'” =cosa +isina
we see that
1= cos(2m,z)+isin(2m,z)

In order for this to be true, the sine term must vanish and the cosine term must become unity.
This is true if m; is an integer, either positive or negative and including zero.

m=..,-2,-1,0,1,2, ...

Energy Levels

As such, the energy of a rigid rotator limited to rotation in the xy plane is given by

242
E, =2 m, =0,£1,42,...

ny 2/1]"2

It is important to note that these functions are doubly degenerate for any non-zero value of m; as
there are always two values of m; that yield the same energy.

Normalization
The wavefunctions can be normalized in the usual way.

Ji (e ) (4,6 g =1
S

_ 2 2z
- Am, J.O d¢
=4, [l
=274,

L = Am

2 !
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As was the case with the particle in a box problem, the normalization factor does not depend on
the quantum number. The wavefunctions can be expressed

1 .
O(p)=.|—e™  m, =0x1,%2,...
Rotation in three dimensions

We are now ready to tackle the more complicated problem of rotation in three
dimensions. Recall the Schrodinger equation as was previously written.

204 no L of0)+ X L _ag)=-2 E (o)

We already know the form of the solutions for the ®(¢) part of the equation. However,
due to the 1/sin®0 term in the ® equation, it is possible that the solution to the ® part of the
equation will introduce a new constraint on the quantum number m;.

Energy Levels

The only well-behaved functions (functions that satisfy all of the boundary conditions)
have energies given by

I+

E
1 2,ur2

[=0,12,...

The quantum number / indicated the angular momentum. m; is the z-axis component of
angular momentum. The z-axis is treated differently than the x- or y-axes due to the unique
manner in which the z-axis is treated in the choice of the spherical polar coordinate system (since
0 is taken as the angle of the position vector with the positive z-axis.) Also, as will be shown

later, the operator ﬁz , the z-axis angular momentum component operator, has a special

relationship with the Hamiltonian (as does the squared angular momentum operator, °.)

Degeneracy

The interpretation of the quantum number m; is that it gives the magnitude of the z-axis
component of the angular momentum vector. And since no vector can have a component with a
magnitude greater than that of the vector itself, the constraint on m; that is introduced by this
solution is

|m,| <l
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so for a given value of /, there are (2/ + 1) values of my that fit the constraint. And since the
energy expression does not depend on my, it is clear that each energy level has a degeneracy that
is given by (2/ + 1). That can be demonstrated as in the diagram below for an angular
momentum vector of magnitude 2 (/ = 2).

+2

+1
z

-2

As can be seen in the diagram, there are five possible values of m;, +2, +1, 0, -1 and -2. These
five values correspond to the (2/ + 1) degeneracy predicted for a state with total angular
momentum given by / =2 (and therefore 2/ + 1 = 5). When we see the wavefunctions in more
detail, there will be a new reason for this constraint on the quantum number ;.

Wavefunctions

For convenience, we’ll first look at the solutions where m; = 0. The wavefunctions under
this constraint have two parts, a normalization constant and a Legendre polynomial in cos(0).
The Legendre polynomials are another set of orthogonal polynomials, similar to the Hermite
polynomials that occur in the solution to the harmonic oscillator problem. The Legendre
polynomials can be generated by the following relationship

’

P = s ga

(x? =D

The first few Legendre polynomials are given below.

| \ Pi(x) \ Pi(cos 0) ‘

0 1 1

1 X cos(0)

2 | %BBx*-1) Y5[3cos?(0) — 1]

3 | %(5x° = 3x) | %[5 cos’(0) — 3 cos(0)]

A recursion relation for the Legendre Polynomials is given by
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I+ DPy(x) = 2L+ DxP(x) = L P4 (x)

When m; = 0, the spherical harmonic function Y/"(6,$) = ®(0)D(d) becomes just O(0), since the
¢ dependence disappears. The O(0) part of the wavefunctions are given by

P
00) = [(2124_ 1)} P(cos0)

The functions are slightly different for m; # 0. In this case, the functions involve a set of
functions that are related to the Legendre Polynomials called the associated Legendre
polynomials. These functions are generated from the Legendre polynomials via the following
relationship.

m ‘m,‘
APl =) (=) L
dx™

Note that for any value of |my| > [, the derivative of P/(x) vanishes.

d‘m"
WP’(X):O for|m|>1

And this is the origin of the constraint on m;.

The associated Legendre polynomials depend on both / and m,. Also, given the |m,| dependence,
the sign of m; does not matter. (The only place that the sign of m; matter is in the ®(¢) function.)
The first few associated Legendre Polynomials are given in the table below.

Cm | Pi™(x) Pil"l(cos 0)
0 0 1 1
| 0 X cos(0)
1 (1-x%)” sin(0)
0 5(3x%1) | %(3 cos*(B) — 1)
2 1 3x(1-x%)”* | 3 cos(0) sin(0)
2 3(1-x?) 3 sin*(0)

Spherical Harmonics

The rigid rotor problem was solved using the Schrédinger equation

h? (1 o . 0 1 8
- > —sin@—+
2ur

sin @ 66 00 sin’@ a¢2 jW(0,¢):El//(9,¢)
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As it turns out, the solutions to this equation are very important in a number of areas in
chemistry and physics. The eigenfunctions are known as the spherical harmonics (¥, (6,¢))

and they appear in every problem that has spherical symmetry. The Spherical Harmonics satisfy
the relationship

L 9 Gng 2 ! iY“f(9¢)—h21(1+1)Y'"'(9¢)
sinf 00 00 sin’0og> ) S

Each function Y™ (0,¢) has three parts: 1) a normalization constant, 2) an associated Legendre
polynomial in cos(0), and 3) an imaginary (for m; # 0) exponential in ¢.
1

2L+ D= ImD]?

Imyl imy¢p
P 0) eim
an(l + my)) 1 (cos) e

(6, ¢) =

The first few Spherical harmonics are shown in the table below.

I | m Y, (6,4)
0 0 L
47

3
0 \/% cos(6)

1
3 .
+1 /—sin(@) etid
8w
/5
0 — (3cos?(8) -1
167z( ©) )
15 . sig
2 +1 — sin(@) cos(H)e
87
+2 /i sin’ (8)e™*"*
327

Notice the (2/+1) degeneracy in these functions, due to the (2/+1) values of m; for each
value of /. Also, it is useful to not that these functions all have / angular nodes (values of 0 that
cause the wavefunction to vanish.) For the /=1 wavefunctions, these nodes occur at 0 = /2 for
m; =0 and at 0 = 0 for m; =+1. The number of nodes in each wavefunction is a useful property
to know when discussing how these functions related to the radial wavefunction in the Hydrogen
atom.
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Angular Momentum

The Spherical Harmonics are involved in a number of problems where angular
momentum is important (including the Rigid Rotor problem, the H-atom problem and anything
else where spherical symmetry is involved.) Angular momentum is a vector quantity that is
given by the cross product of position and momentum.

L=rxp

This quantity can be calculated from the following determinant.

i j k
L=fxp=|x y z
px p_y pZ

=(wp. —2p, i+ (zp, —xp. )i+ (xp, - yp. K

Substituting the operators for the components of linear momentum, the operators that correspond
to the three components of angular momentum are

— _ 0 d
L, = —Lh(y——z—)

0z dy
L= —in(za—x")
AN T
L= —in(xa—ya)
2=t xay 0x

These can be used to determine the square of the angular momentum, which is given by the dot
product of L with itself.

LL=L=L+L+L
Similarly, the operator for the square of the angular momentum is given by

=0+ +1

In spherical polar coordinates, the angular momentum operators are given by the expressions
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X

L =-in sin¢5i+cotﬁcos¢i
00 o¢p

L =-ih —cos¢i+cot6’sin g/ﬁi
g 00 o¢p

And the angular momentum squared operator is given by

2
L’ =-n’ _1 isint9i+ L
sin @ 06 00 sin’ 6 0¢’

For the Rigid-Rotator problem, it is interesting to note that the Hamiltonian is very closely
related to the angular momentum squared operator.

~ I/ 1 0 . ,0 1 o
H=-——|———-sinf—+—— 5
2ur | sin@ 060 060 sin” 0 0¢
_Llp
21

The eigenfunctions of the L operator are the Spherical Harmonics, ¥, (6,4). These functions
have the important properties that

17 (0.0)= "1 D v (0.9

2y (6,) = 12 +1)Y," (0,9)
L.Y"(0.¢)=tmY," (0.4)

Seeing as the spherical harmonics are eigenfunctions of all three of these operators, what is
implied about the commutator of these two operators?
There are important relationships between the angular momentum operators. Each of the

operators corresponding to the components of angular momentum commutes with the L’
operator, but they do not commute with one another. This implies that one can measure the
squared angular momentum and only one component of angular momentum. This is generally
taken as the z-axis component of angular momentum as the z-axis has special properties due to
the manner in which the spherical polar coordinates have been defined.
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2.2 )= |22, |- (e 2 =0
i..2,)0 [£,.0.]0; [£..0.]%0

The commutators involving two components of angular momentum are particularly interesting.
Consider the commutator between and ix and iy .

P2 |=i.0, L.

Let’s define each term separately and then take the difference.

L.L =(-ih)’ yg—zi (zi—xg]
g oz oy N\ ox oz

of 0 0O 0o 0 0o 0 0 0
=-h|y—z——-y—x——-z—z—+z2—Xx—
0z Ox 0z 0Oz oy Ox oy Oz

The second, third and fourth terms are easy to simplify as the derivatives do not affect the x or z
variables. The first term, however, requires some application of the chain rule.

2 2 2 2
ltxlt =-n’ y£+yz 0 —xya2—z2 0 + xz 0
Y Ox o0x0z Oz Ox0y

0yoz
Similarly,

> o’ , 07 0’ 0 o’
=—h"| zy -z —Xy—5 tix—_—+xz
0x0z oxoy 0z oy 0z0y

Taking the difference will cancel all of the second derivative terms, leaving only the first
derivative terms behind.
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Similarly, it can be shown that

Application to the Rotation of Real Molecules

While the spherical harmonics are the wavefunctions that describe the rotational motion
of a rigid rotator, the names of the quantum numbers are changed to reflect the type of angular
momentum encountered in the problem. The quantum number / and m; should be familiar as
these are the ones used in the hydrogen atom problem to describe the orbital angular momentum.
However, for rotational motion, these are replaced by J and M;. The energy levels of the rigid
rotator are therefore given by

2

E, =J(J+1)

2

2ur

And since Mj does not appear in the energy level expression, each level has a (2J + 1)
degeneracy. The spacings between energy levels increases with increasing J due to the J(J + 1)
dependence (which has a J? term.) This pattern is shown in the diagram below.

Energy Levels for a Rigid Rotor

Energy
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For spectroscopic measurements, the rotational energy (given the symbol Fj) is often expressed
in spectroscopic units, such as cm™. Also, a spectroscopic constant, B, is used to describe the
energy level stack.

E
F=7-=BJU+1)

where the spectroscopic constant B is given by

B h
8m2cur?

Thus, by knowing the value of , the reduced mass, and measuring the value of B, the rotational
constant, one can determine the value of r, the bond length. This is the utility of rotational
spectroscopy — it gives us detailed information about molecular structure!

Centrifugal Distortion

As we know, since they vibrate, real molecules do not have rigid bonds. So it is no
surprise to learn that the Rigid Rotor is really just a limiting ideal model, much like the ideal gas
law describes limiting ideal behavior.

Real molecules, especially when rotating with very high angular momentum, will tend to
stretch. In other words, the average bond length will increase with increasing J. And given the
inverse relationship between B and bond length (1), it is not surprising that the effective B value
is smaller at higher levels of J. In fact, this centrifugal distortion problem is well treated by
introducing a “distortion constant” D such that

F;=BJJ+1)-DII(J + D?

Naturally, one would expect the distortion constant to be small in the case of a strong, inflexible
bond, but larger if the bond is weaker. The approximation of Kraitzer suggests that the distortion
constant is determined to a good approximation by

4B°

2
@

e

D=

For a well behaved molecule, he distortion constant D is always smaller in magnitude than B.
Some molecules require several distortional constants to yield a reasonable description of their
rotational energy level stack. If additional constants are needed, they are introduced as
coefficients in a power series of J(J + 1).

Fy=BJJ+1)-DJJ+D)P+HIJJ+D]P + ...
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The power series is truncated at a point that yields a good fit to experimental observations for a
given molecule.

Spectroscopy

The experimental determination of spectroscopic rotational constants provides a very
precise set of data describing molecular structure. To see how experimental measurements
inform the determination of molecular structure, let’s examine what is to be expected in the pure
rotational spectrum of a molecule first.

Microwave Spectroscopy

The rotational selection rule in microwave absorption spectra is
AJ=+1

(Selection rules are discussed in more detail in a later section.) The pattern of lines predicted to
be observed in a microwave spectrum (a pure rotational spectrum of a mole) can be derived by
taking differences in rotational energy levels.

v, =1, - F,

F,,—F, =B(J+1)(J+2)-BJ(J +1)
=B(J* +3J+2)-B(J*+J)
=B(J?+3J+2-J°-J)
= B(2J +2)
=2B(J +1)

This suggests that a pure microwave spectrum should consist of a series of lines that are evenly
spaces, the spacing between which is 2B. It also suggests that a plot of the line frequency
divided by (J+1) should yield a straight and horizontal line,

vV, _

J+1)

The inclusion of distortion yields a slightly different conclusion.

Quantum Chemistry with Applications in Molecular Spectroscopy: The Rigid Rotor © 2022 Patrick E. Fleming
- Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

155



https://creativecommons.org/licenses/by-nc-sa/4.0/

F

J+1

~F,=B(J+1)(J+2)-D[(J +1)(J +2)]" = BJ(J + 1)+ D[J(J + 1]
=B(J*+3J+2-J°=J)=D[(J* +3J+2)* = (J* +J)*]
=BQRJ+2)-DJ*+6J° +13J° +12J +4—-J* =2J° = J?)
=2B(J +1)=D(4J> +12J% +12J +4)
=2B(J +1)-4D(J +1)°

v
L_—2B—4D(J + 1)?

Jg+1)
This suggests that a plot of ( Yy 1) vs. (J+1)? should yield a straight line
+ =

J | Vi(em!

with slope -4D and intercept 2B. 0 J; 84533
Consider the following set of data for the microwave spectrum of 1 '

12C'%0 (Lovas & Krupenie, 1974). 7.68992
> 2 11.53451
A plot of —Z— vs. J yields a plot as the following. 3 15.37867
J+1 4 19.22223
5 23.06506
Microwave Spectrum of 2¢c'%0 6 26.90701

Clearly, this is not a horizontal line. The conclusion is that centrifugal distortion is not negligible
for this molecule. Including distortion suggests that the plot that should be considered would

~

involve —<— vs, (J+1)>. This yields the following:

(J+1)
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Microwave Spectrum of 12c1%0

3.8452
3.845
3.8448 A
3.8446 -
3.8444 A
3.8442 A
3.844 -
3.8438 -
3.8436 T T T T T |
0 10 20 30 40 50 60

(J+1)?

y = -0.0000245x + 3.8450579

vil(J+1) (em™)

This does yield a straight line! From the fit, one calculates a B value of 1.92253 cm™ and a D
value of 0.00000612 cm’!.

Calculating a Bond Length from Spectroscopic Data

Spectroscopic data (and microwave data in particular) provides extremely high precision
information from which bond lengths can be determined. Based on the above data and the
masses of carbon-12 (12.00000 amu) and oxygen-16 (15.99491463 amu) (Rosman & Taylor,
1998) a reduced mass for '>C'%0 can be calculated as

U=—""2 =6.85621amu =1.1385x10 kg

Recalling the expression for the rotational constant B

B h
87icur’

h
r=lea =
8r°cuB

Using the data from above, one calculates a bond length for CO to be r = 1.1312 A. This value is
actually the average value of the bond length in the v =0 level. The literature value for the
equilibrium bond length (the bond length at the potential minimum) is given by r. = 1.128323 A

B

The bond length is given by
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(Bunker, 1970) which is slightly shorter (as is to be expected.) The extrapolation of data to
determine values at the potential minimum is discussed in a later section.

Rotation-Vibration Spectroscopy

Each vibrational level in a molecule will have a whole stack of rotational energy levels.
As such, vibrational transitions will also show rotational fine structure. This fine structure can
be analyzed to determine very precise values for molecular structure in much the same ways
microwave data for the pure rotational spectrum can be. One method for analyzing this data is
that of combination differences although direct fitting of the data will give better results
mathematically. Before beginning a discussion of combination differences, however, it is
necessary to discuss selection rules.

Selection Rules and Branch Structure

Selection rules are determined for spectroscopic transitions as those transitions for which
the transition moment integral does not vanish. This is because the observed intensities of
spectroscopic transitions are proportional to the squared magnitude of the transition moment.
The transition moment integral is given by

[l ay")dr
and so the intensities of transitions are given by
. 2
Int.oc [ (') ily")dz]

where a single prime (‘) indicates the upper state of the transition and a double prime (*)
indicates the lower state. The operator z corresponds to the change in the electric dipole

moment of the molecule as it undergoes a transition from a state described by y” to one
described by y’. Other operators may be used in this expression (magnetic dipole, electric
quadrupole, etc.) but these lead to significantly weaker transitions (by a factor of 10° or more!)
When the electric dipole operator is used, the transitions for which the transition moment is not
zero are said to be allowed transitions, while all others are said to be forbidden transitions by
electric dipole selection rules. Since other types of transitions are so weak by comparison, a
transition that is said to be allowed or forbidden is assumed to mean by electric dipole selection
rules unless specifically stated otherwise.

The selection rules for vibrational transitions are

Av==+1]

For closed-shell molecules (molecules where all of the electrons are paired), the rotational
selection rules are
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Al ==l

AJ = 0 is possible for some open-shell molecules, but his topic will be discussed in more detail in
Chapter 7.

The rotational fine structure of a transition can be separated into branches according to
the specific change in the rotational quantum number J.

A
+1 | R-branch
0 Q-branch
-1 P-branch

In Raman spectroscopy (which is an inelastic light scattering process rather than the direct
absorption or emission of a photon, and thus follows different selection rules) O- and S-Branches
can be observed with AJ = -2 and +2 respectively.

The spectrum of possible branches and transitions that can be observed for all possible
molecules can be quite daunting (and take an entire graduate level course in molecular
spectroscopy just to scratch the surface!) For the purposes of this discussion, we will limit
ourselves for the time being to just closed-shell molecules for which P- and R-branches can be
observed.

Consider the following energy level diagram depicting the rotational energy levels in two
different states. The diagram shows the expected branch structure for a closed shell molecule.
Notice that the transition lines get longer with increasing J in the R-branch, but shorter with
increasing J in the P-branch. The largest difference in transition energy is for successive lines in
the spectrum is that between the Ro and P lines. The band origin (V) will lie between these

two lines, and is at the energy difference between the J’=0 and J”=0, the two non-rotating levels
in the two vibrational levels. Also notice that the rotational energy spacings in the upper state
are smaller than those in the lower state. This is do to a smaller B value in the upper state (v =
1), which has a larger average bond length than the v =0 level.
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Energy Level Diagram
Showing R- and P-Branch Structure
J=4
3
v=1
2
1
0
J'=4
v=0 3
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0
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Combination Differences

Consider the following partial energy level diagram:

Quantum Chemistry with Applications in Molecular Spectroscopy: The Rigid Rotor © 2022 Patrick E. Fleming
- Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

160



https://creativecommons.org/licenses/by-nc-sa/4.0/

* s J

J-
TE
J+
J
J- 1
R{J-1) F{J)
R{J) P{J+1)

It is clear that since the R(J) and P(J) transitions share a common lower rotational level
(Fy), the energy difference between the R(J) and P(J) transitions gives the energy difference
between the Fy+1 and Fy.; in the upper state of the transition. Similarly, the difference between
F3+1 and Fy.1 in the lower state is given by R(J-1) — P(J+1). Thus, by taking differences of
transition energies in the proper combination, dependence on one of the states can be eliminated.
Also, the difference A>F(J) can be found. This difference is defined by:

AF(J)=Fy1 —Fia
Using the rigid rotator model,
F;=BJ(J+1)
an expression for A2F(J) can be easily derived:

AFJ)=BJ+1)J+2)-BJ-1)(J)
=BJ*+3J+2)-B(J*-J))
=B(4]+2)
=4B(J+1/2)

Thus the value of A2F(J) that can be found for either the upper or lower states by
combination differences from the energies of the spectral lines, can be used to find the
spectroscopic constant B.
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AFD) _4p
(J+1/2)

And the A>F(J) values are determined by the combination differences

AF(J) =R(J) - P(J)
AF”(J) = R(J-1) — P(J+1)

were the single prime () refers to the upper state and the double prime () refers to the lower
state.

For most molecules, the rotational distortion constants are not negligible. In this case, the
rotational term values are given by

F(J) =BJ(J+1) — DI’ (J+1)> + HP(J+1)* + ...

Neglecting terms of higher order than DJ?(J+1)? (since these terms are small for most molecules)
the combination differences relationship can be derived as

AF(D)=BJ+1)J+2)-DJ +1)’(J+2)* =B -1)())+DJ -1)*(J)*
=B[(J*+3]+2)-(J*=D]-D[J* + 2T+ 1)(J* +4] +4)—(J* = 2T+ 1)J*]
=B@4J+2)-DJ*+4) +41* + 21 + 817 + 8]+ 1 +4] +4-J* +27° - J?%)
=4B(J+1/2)-D(81° +121* +12] +4)
=4B(J+1/2)-8D(J° +3/2]* +3/2] +1/2)

It would be convenient if the term involving D could be factored. Recognizing that
(J+1/2 =P + 32> +3/4] + 1/8
the “cube” can be “completed” by

A,F(J)=4B(J+1/2)-8D(J° +3/21° +3/41 +1/8 +3/41+3/8)
=4B(J +1/2)-8D(J +1/2)* -8D(3/4J + 3/8)
=4B(J+1/2)-8D(J +1/2)’ -D(6J +3)
= 4B(J+1/2)-8D(J +1/2)* - 6D(J +1/2)
=[4B-6D](J +1/2)-8D(J +1/2)°

And by dividing through by (J+1/2)

AF(Q)
(J+1/2)
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So using the spectral data, a plot of

R(J)-P(J)
(J+1/2)
or
R(J-1)-P(J+1)
(J+1/2)

vs. (J+1/2)°

vs. (J+1/2)

should yield straight lines with slopes of 8D and an intercept of (4B — 6D) for the upper and
lower states respectively.

Additional Spectroscopic Constants

Since each vibrational level has a different average bond length (increasing with
increasing vibrational quantum number for a well-behaved electronic state,) the rotational
constant has a dependence on the vibrational quantum number v.

B, =B, —a,(v+})+r.v+4) +...

where Be is the equilibrium value of the rotational constant (and the constant from which re is
derived), a. and y. are constants that describe how rotation and vibration are coupled in a
molecule. Usually this power series in (v + 2) can be truncated at the o term (unless data for a
great many vibrational levels are known.)

Similarly, the distortional term can be expanded in a power series in (v + 72).

D,=D,-B.(v+%)+...

For most molecules, B¢ is not determined within experimental uncertainty unless a great many
vibrational levels have been included in the fit.

A typical methodology would be to determine By for all of the vibrational levels for
which data exists. (A single vibration-rotation band analysis provides two values, one for the
upper state and one for the lower state.) Then the By values are fit to the functional form given

by
B, =B, —ae(v+%)+7e(v+%)2 +...

truncating the power series so as to include the minimum number of adjustable parameters as are
needed to yield a good fit to the data. This process yields a value for Be which can then be used
to calculate re. These values can then be compared to those found in the literature (if such a
value has been measured) or reported in the literature if it has not yet been measured! A similar
approach is used for the distortional term(s).
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Line Intensity in Rotational Structure

One element that we have not discussed in the subject of rotational spectroscopy (or the
rotational fine structure in vibration-rotation spectroscopy) is the intensities of the spectral lines.
The intensity will be determined by two factors: 1) the population of the originating state (lower
state in absorption and upper state in emission spectra) which is well described for a thermalized
sample by a Maxwell-Boltzmann distribution, and 2) the line strength, which is determined by
the quantum mechanical relationship between the upper and lower states of the transition.

the Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution of energy level populations will be achieved by any
system that is in thermal equilibrium (usually implying that a sufficient number of molecular
collisions occur for a gas phase sample, or that all of the parts of a sample are in thermal contact
with one another in condensed phase samples) to ensure thermal uniformity throughout the
sample. The distribution is given by the following expression:

i

N, q

N d[efE%T

where Ni/Nio is the fraction of molecules in the i quantum state, that has and energy given by E;
and a degeneracy given by d;. The term kT is the Boltzmann constant times the temperature on
an absolute scale. The denominator, g, is a partition function, which is part of a normalization
factor. The partition function is given by

q= ZdAefE%T

In the case of rotational energy levels for closed-shell molecules, the subscript I can be replaced
by the rotational quantum number J.

E,
qmt :ZdJe_ 4T
J

In this expression, the rotational energy level degeneracies are always given by (2J+1) and the
rotational energy levels (if treated as rigid rotor levels) are given by hcBJ(J+1). Thus the
expression for the rotational partition function, gy, 1S given by

_heBJ(J+1)

i Z (2J +1D)e kT
J
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It is handy to note that hc/kT has a value of approximately 206 cm™ at room temperature. When
the energy E; exceeds approximately 10-kT, the exponential term becomes negligibly small.

Focusing on the numerator of the Maxwell-Boltzmann expression, it is clear that the
effect of increasing J is mixed in the expression. As J increases, the degeneracy increases
(having the effect of increased fractional population in the level) but also the exponential term
gets smaller due to the higher energy (having the effect of a decreased fractional population in
the energy level.) A plot of factional population as a function of J (for HCI at 298 K) is shown
below.

Maxwell-Boltzmann Distribution of Rotational levels

0.2

0.18 A

0.16 A

0.14

0.12 A

0.1 4

0.08 -

Fractional Population

0.06 -

0.04 -

0.02 A

Note that at low values of J, the fractional population increases with increasing J, to a point.
Eventually, the exponential term takes over and the population is extinguished. The J value
(Jmax) at which this changeover occurs is a function of the rotational constant B and the
temperature, and can be determined by solving the following expression for J.

_heBJ(J+1)

27+ 1)e i =0
dJ

The result is
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Jmax = kT _l
\2Bhe 2

The intensity pattern is plainly visible in the rotation-vibration spectrum of HCI. A simulated
spectrum of the 1-0 band of H*Cl is shown below, clearly showing the P- and R-branch
structure, and the large gap between where the band origin can be found.

Simulated Absorption Spectrum of H3°ClI
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Line Strength Considerations

The second major consideration in spectral line intensity is the line strength. This is
determined by the squared magnitude of the transition moment integral.

nt.<|[ (") Ely")d f\z

The rotational contribution, often called the rotational line strength, to this expression is a Honl-
London factor. For closed shell diatomic molecules, the Honl-London factors are given by

S;=J+1 (for R-branch lines)
Sy=1J (for P-branch lines)

A good way to think of these expressions is to view them as branching ratios. They indicate
the relative fraction of molecules in a given level that will undergo an R-branch transition
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compared to what fraction will undergo a P-branch transition. The molecules the lower state
must “decide” to undergo either an R-branch transition or a P-branch transition. The relative
fraction of each type of “decision” is the branching ratio.

J+1

J-1

Notice that the sum of these two expressions gives the total degeneracy of the rotational level.
Given this relationship, it should be clear that the fractions of molecules undergoing each type of
transition are given by

FR=JJrl and F, = J
2J +1 2J +1

For open shell molecules, the expressions can be quite a bit more complex, but that is a topic for
a more detailed course on molecular spectroscopy. However, some of the details of rotational
structure of open shell molecules will be discussed in Chapter 8, as the electronic portion of the
molecular wavefunction can affect the rotational structure profoundly.
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combination differences...................
forbidden transitions ........................
Honl-London factor ..........ccuuuee....
Legendre polynomial .......................

line strength.........cccoevveiveniiienie,

Maxwell-Boltzmann distribution.....

Problems

1. Consider the data given in the table for lines found in the
pure rotational spectrum of '>C'®0. Determine an 1
approximate value for B and assign the spectrum (the
lower = upper state rotational quantum numbers for each

~

Vs

line.) Make a graph of
) srap (J+1

vs. (J +1)* and determine

moment of INertia.......ccceeveerieeeneenieennnn. 124
11ZId TOLOT v 123
selection Tules........oceeveerieenieniieenieee, 139
spherical harmonics ..........cccceeeveerveennnns 130
spherical polar coordinates ..................... 123
transition MOmMent ..........eccveeeveereveenneennen. 140

line Vv (cm™)
3.845033 19
2 7.689 919 07
3 11.534 509 6
4 15.378 662
5 19.222 223
6 23.065 043

the best fit line. Use these results to determine B and D for the molecule. Compare your
results to those found in the NIST Webbook of Chemistry for the ground electronic state

of CO.

2. Consider the following data for the rotation-vibration spectrum of H**CI.
a. Using the differences in frequency, assign the location of the band origin and
assign the P- and R-branches accordingly.

b. Using combination differences, fir the data to find B’, D’, B” and D”".
c. Use your results to find Be, o and De.
d. Based on your value of Be, find a value for r. for the molecule.
e. Compare your results to those found in the NIST Webbook of Chemistry.
line | Freq. (cm™) AV
1 3085.62
2 3072.76
3 3059.07
4 3044.88
5 3029.96
6 3014.29
7 2997.78
8 2980.90
9 2963.24
10 2944.89
11 2925.78
12 2906.25
13 2865.09
14 2843.65
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15 2821.49
16 2798.78
17 2775.79
18 2752.03
19 2727.75
20 2703.06
21 2677.73
22 2651.97
23 2625.74
24 2599.00

3. A recursion formula for the Legendre Polynomials is given by
I+ DPy(x) = 2L+ DxP(x) =L P4 ()

Based on Py(x) = 1 and P; (x) = x find expressions for P»(x) and P3(x).

4. The function describing the / = 1, m; = 0 spherical harmonic is Y (6, ¢) = \/% cos(6)

a. Show that this function is normalized. To do this, you must use the limits on 0
and p of 0 < 6 < m,and 0 < ¢ < 2m. Also, for the angular part of the Laplacian,
dt = sin(0) d6 d¢.

b. Using plane polar graph paper (or a suitable graphing program) plot the square of
the function from problem 2 in the yz plane (which gives a cross-section of the
probability function for the particular spherical harmonic.) Does the shape look

familiar?
5. Based on the given bond-length data, calculate values —‘ lecule Bond Lensth (A) |
for the rotational constants for the following H3 — 10746 cngth ()
molecules: HBr 1 4144

H'?"T 1.6092

6. The spacing between lines in the pure rotational
spectrum of BN is 3.31 cm™!. From this, find B and calculate the bond length (rgn) in the
BN molecule.

7. From your result in problem 6, calculate the frequencies of the first 4 lines in the pure
rotational spectrum of BN.
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