Chapter 4: The Harmonic Oscillator and
Vibrational Spectroscopy

One of the four important problems in quantum mechanics that can be solved analytically
is that of the Harmonic Oscillator. This problem is very important to chemists as it provides the
model for vibrating molecules and explains what we see in infrared and Raman spectra of
molecules. In this chapter we will develop the problem, discuss the limitations of the simple
problem and how we deal with them, and the applications of the conclusions to molecular
spectroscopy and the measurement of molecular properties.

The Potential Energy Surface for a Diatomic Molecule

Consider the potential energy surface for a diatomic molecule. The functional form can
be seen in the following graph.

u(r)

In the surface, it is easy to see the “hard wall” on the left side, where the repulsive force between
atoms is strong (which is why the curve is so steep) and the “soft wall” on the right side of the
well, where the restorative force of the chemical bond exists. The bond length at the potential
minimum is indicated by re, the equilibrium bond length.

The function can be expressed as a Taylor series expansion. For convenience, we can
define x = (r-re). We will also define the zero of energy to be the bottom of the potential well.
Given these definitions and the Taylor expansion about x = 0 which can be expressed by

1 d°

d L 5 LAY AU

Ux)= U(O)+£U(x) (x)+5yU(x)

x=0

6 dx’

x—0

We can evaluate these terms qualitatively based on the above diagram and the definitions
provided above. The first two terms of the expansion are zero, by the choice of the zero of
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energy and because the derivative is zero at the potential minimum. The third and fourth terms
are simplified by making the following substitutions

2 3
%U(x) =k and d—3U(x) =y
X x—0 dx x—0

The new function can be rewritten as
U(x) —lkx2 +l x>+
2 6 4

And if the series is truncated at the x? term, it yields the familiar Harmonic Oscillator potential
energy function that corresponds to a Hook’s Law oscillator.

1
U(x)=—kx*
(x) 5 X

Transforming to Center of Mass Coordinates

Consider a diatomic molecule that can be modeled as two masses (m; and my) attached
by a spring that has a force constant k. The location of atom 1 is z; and that of atom 2 is z. The
equilibrium length of the spring is re.

2-1 22

The force acting on either atom can be expressed in two ways.
F =ma and F=-kx
where m is either m; or m> and x is the displacement from the equilibrium distance, given by

X=(22-21-T1¢)
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The force acting on atom 1 is in the opposite direction of that acting on atom 2. This suggests
two equations that will govern the motion of atom 1 and atom 2 respectively.

2 d2
mlﬁzlzk(zz—zl—re) and —mzﬁzzzk(zz—zl—re)

Dividing both equations by the masses yields the following pair of equations.

d* k d’ k
(Zz_Zl_r) (

z, = 3 and ——z, =—

dt’ m, dt’ m,

zZ, =z, —r)

e

Add these two equations yields

2 2
%21 _d_zz :(L"'LJIC(% 4 _re)

1 1 . . . .
The term (— + —] has important significance, as it is the reciprocal of the reduced mass.

m, m,
1 1 m +m, 1
—_—t | ==
m, - m, m,m, H
m,m,

m, +m,

The reduced mass is introduced as a consequence of moving to center of mass coordinates. It is
the mass of a single object that would move with the same frequency of oscillation were it
attached to a fixed point by a spring of the same force constant. It is important to note that p has
units of mass. Also, in the limit that m; and mz have the same value (let’s call it m)
__mnm
m, +m,
m;

=
M
2

This result makes a great deal of sense because for equal masses, the motion of the molecule will
involve equal and opposite motions of the two atoms relative to the center of mass (which will be
the middle of the bond.) Thus, a single mass oscillating with the same frequency is moving
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relative to a distance that is in the middle of the spring. Hence, the mass will have to be half of
the mass of one of the atoms, or the frequency would be different.

The other important limit is when one mass is significantly larger than the other.
Consider what happens when m; >> m;

m, +m2

This result makes a great deal of sense because if one mass is significantly larger than the other,
it will be the light atom that undergoes the larger motion. In the limit that m; = oo, the center of
mass is located at z; and the heavy atom becomes a fixed point in the motion.

The next task is to simplify things further by introducing a mass-weighted coordinate, Z.

mz +m,z,

Z

m; +m,

This expression gives the location of the center of mass of the molecule. The utility of this
substitution is found in taking the difference of the two equations

2 d2
ml?z1 =k(22—zl—re) and —szQ:k(zz—zl—re)
which yields
d* d?
m, EZI +m2 EZZ =0
dZ

?(mlzl + m222)= 0

Dividing both sides by (m; + my) yields

2
(;Jd—(mlzl +m,z, ) =0

m, +m, )dt’
i mz, +m,z, _0
e’ m, +m,

Finally, making the substitution for the center of mass
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which tells us that the center of mass of the system does not move in time.

Solving the Schrodinger Equation

It is convenient to make the substitution that
x=(22 4 _re)
This allows us to write the Hamiltonian for the system then as

2 2
P
2udx” 2

where [ is the reduced mass given by

m,m,

m, +m,
k is the force constant of the bond and x is defined by
X =(r-re)
as previously state. The Schrodinger equation is then given by

noddo1
(—Zy + EkXZ]V/(X) = EI//(X)

Energy Levels

The boundary conditions require that the square of the wavefunction must have a finite
area below it in order to ensure that the wavefunction is normalizable. The only way this
happens is if the following conditions are met

lim ¥(x)=0

X—>+00
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The resulting energy levels are the set of eigenvalues that correspond to the functions that satisfy
the above stated boundary condition. These energies have values given by

E, :h\/Z(v+%) v=0,1,2,3, ...
y7i

Notice how the use of the boundary conditions is what leads to the instruction of quantized
energies.

Potential Energy Function

for a Harmonic Oscillator

X=(r-re)

The resulting energy levels are evenly spaced with increasing energy. The actual spacing is
determined by the physical characteristics of a given molecule, namely the reduced mass and the
force constant.

Spectroscopic Constants and Force Constants

Vibrational spectroscopy is often done using units of cm™. Energies expressed in terms
of this unit are called term values. The termvalue is given as the energy divided by Planck’s
constant and the speed of light (E/hc). Standard notation uses the symbol Gy to indicate the term
value for vibrational energy. Gy is given by

E
Gv= - =w(v+1%)
hc

where
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1 |k

W, = —
2rc\ u

The vibrational constant we can be determined experimentally for specific molecules. Consider
the following values for various molecules.

Molecule @ (em™) k(N/m) p (kg) |

'H3Cl 2989.74 516 1.627 x 1077
'"H”Br 2649.67 412 1.652 x 10
TH127] 2309.5 314 1.660 x 1027
19R19E 916.64 347 1.577 x 10°%°
160160 1580.93 1177 1.328 x 10°2¢
I4NI4N 2359.61 3116 1.163 x 102¢

Two important points can be made from this data. First, a typical force constant for a
single bond is on the order of a couple hundred N/m. Secondly, multiple bonds lead to
significantly larger force constants. This is not too surprising since the force constant gives a
measure of the stiffness of the bond.

The Wavefunctions

The wavefunctions for the harmonic oscillator are determined by solving the Schrodinger
equation. As stated before, the only wavefunctions that obey the boundary conditions have

eigenvalues given by
E =nh E(V + 1)
\ 1

where v=0, 1, 2, 3, ... The wavefunctions themselves can be determined by solving the
differential equation using a power-series solution. In the end, we find that the resulting function
involve a set of orthogonal polynomials known as the Hermite Polynomials. We will discuss
some properties of this important set of functions before discussing the wave functions
themselves.

Hermite Polynomials

The Hermite polynomials are a set of orthogonal polynomials. Like all sets of
orthogonal polynomials, they have 1) a generator formula, 2) an orthogonality relationship and
3) a (or several) recursion relations that relate one function in the series to others.

The Hermite polynomials can be generated using the following function
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)= e
dy

v

Using this function, the first few Hermite polynomials can be generated.

v
0 1

1 2y

2 4y*-2

Further members of the set of functions can be generated using one of the important recursion
relations.

H, . (y)=2yH (y)-2vH,_(y)

Using this function, we can generate a longer list of Hermite polynomials without having to take
so many derivatives.

1 6y4-48y2+ 12
32y5- 1 6Oy3+ 120y
Etc.

Another important relationship between these functions is that

d
d_Hv(y) = ZVHv—l(y)
Y

In addition to these relationships, the Hermite polynomials have an important orthogonality
relationship.

f H,(W)Hy (e ™ dy = v! 2V 8.,

The Hermite polynomials also have important symmetry properties. Each function in the set is
an eigenfunction of the inversion operator. The inversion operator is a symmetry operator that
is defined by the operation (in one dimension)
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if (x) = f(=x)

Functions that are eigenfunctions of this operator can be classified as being either even function
or odd functions.

Even f(-x)=f(x)
Odd f(-x) = -f(x)

Even functions are symmetric eigenfunctions of the inversion operator and odd functions are
antisymmetric eigenfunctions as their eigenvalues are +1 and -1 respectively. Even and odd
functions also have important properties when integrated over symmetric intervals.

Even '“'. f(x)dx = 2} f(x)dx

Odd j f(x)dx=0

These properties can greatly simplify integration involving these types of functions!

The Harmonic Oscillator Wavefunctions

The wavefunctions for the Harmonic Oscillator have three important parts: 1) a
normalization constant, 2) a Hermite polynomial and 3) an exponential function that insures the
orthogonality of the wavefunctions.

1
Y, (x) = N,H, (aix) e—ax*/2

where
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Expectation Values

The simplicity of the wavefunctions makes the calculation of expectation values very
simple for the harmonic oscillator problem.

Position

The expectation value of position can be determined solely based on symmetry
arguments. Recall that harmonic oscillator wavefunctions are either even or odd functions. The
symmetry of the products of even or odd functions can be summarized as follows.

| even odd

even even odd
odd odd even

It is easy to recognize this multiplication table as arising from taking the products of the
eigenvalues of the functions with respect to the inversion operator.
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5 T 1

These results will be used to demonstrate that the expectation value of position is the
same for all of the stationary wavefunction. Consider the integral required to calculate this
value.

() =] v, -x-pdx

The wavefunction [y is either an even or odd function depending only on whether v is even or
odd. Since the X operator is itself an odd function (always), there are only two possibilities for
the total symmetry of the integrand.

Integrand
even odd even odd
odd odd odd odd

The pattern emerges due to the fact that the product of even and odd function produces a
resulting function according to the following symmetry multiplication table.
Regardless of whether the wavefunction is an even or odd function, the product

Yv XYy

is always an odd function. And as we have seen before, the integral of an odd function over any
symmetric interval is zero by symmetry.

Therefore, the expectation value of x, <x>, is always 0 for any eigenstate of the harmonic
oscillator. The means that <r> = r., the equilibrium bond length.

Momentum

The evaluation of the expectation value of momentum can be made following the same
symmetry arguments. In order to do this, one must consider the effect of taking a derivative of a
function.

Consider the following even function

f(x)=4x" -2

The first derivative of this function is given by
d
— f(x)=8x
p J(x)

which is an odd function. The derivative of this function
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i8x28
dx

yields an even function. The following set of properties will hold for the symmetries of
functions and their derivatives.
d
& —fx
dx

even odd
odd even

As such, the symmetry of the integrand for the calculation of the expectation value of momentum

LO W, Py dx
must always be an odd function, since the p takes the first derivative of the wavefunction.
) Integrand
Wy pWy Symmetr

even odd odd
odd even odd

The result is that the expectation value of momentum, <p>, must also be 0 for any eigenstate of
the harmonic oscillator problem. Again, this can be reasoned by noting that half of the time the
momentum measured will be in the direction of the bond stretching, and the other half of the
time in the direction of the bond being compressed. On average, these two circumstances will
cancel, yielding an average value of <p>=0.

Energy
As with any eigenstate, the expectation value of energy <E> is easy to calculate. Recall
that the wavefunctions were determined to be eigenfunctions of the Hamiltonian.

Hy,=Ey,

As such, The expectation value of energy is trivially easy to find for a system in an eigenstate.
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(E)={ v Hy,dx
="y, By.dx

=E,[ wy.dx
- E,

since the wavefunctions are normalized. The expectation value of energy is always an
eigenvalue of the Hamiltonian for a system that is in an eigenstate of the Hamiltonian.

Tunneling

One of the curious consequences of quantum mechanics can be seen in the form of
tunneling. This odd behavior becomes possible whenever the square of the wavefunction
extends beyond a classical barrier to the motion of the particle r molecule. In the case of the
harmonic oscillator, this is seen as possible since the squared wavefunction extends beyond the
classical turning points of the oscillation.

The classical turning point is defined as the point in the motion where all energy has been
converted from kinetic energy to potential energy. At this point, the motion switches direction as
potential energy is converted back into kinetic energy. Since there is a non-zero value of the
squared wavefunction beyond this point for all eigenstates, there is a non-zero probability of
measuring the position of the system to lie beyond these classical turning points. And then if
there is a new potential well accessible if the system tunnels through the classical barrier, there is
a non-zero probability of finding the system in that well, meaning that the system may have
changed states completely!

This result is another example of the bizarreness of quantum mechanics. If one were to
consider a classical ball that is thrown against the wall at the front of the classroom, one expects
that the ball will return to the thrower after bouncing off the wall every time. But for a quantum
mechanical ball, there is a non-zero possibility of finding the ball on the other side of the wall! If
this were to be the case, the ball would have been said to have tunneled through the wall.

The probability for this happening is proportional to that fraction of the area under the
squared wavefunction curve that lies beyond the classical barrier. This probability will be
decreased for heavier objects as the fraction of wavefunction beyond the classical barrier will be

= L
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Strengths and Weaknesses

Keeping in mind that the harmonic oscillator model is an approximate model, it should
not come as a surprise that there are a number of shortcomings to it.

The harmonic oscillator does not place any constraints on bond length. At the short bond
length side of the potential, there is nothing in the model to prevent the bond length from
becoming zero or even negative (implying that it is possible for one atom to pass through the
other in a molecule. Additionally, the harmonic oscillator does not allow for molecular
dissociation as the potential energy just keeps increasing with increasing bond length. None the
less, the harmonic oscillator model works quite well for small displacements from the
equilibrium bond length.

The Morse Potential

One improved form of a potential energy function was provided by Phillip Morse (Morse,
1929). The Morse potential is given by the following function

U(r)=D, (1 - e_ﬁ("_r"))z

Harmonic and Morse Potentials

u(r)

— Harmonic
— Morse

where D is the dissociation energy of the molecule. While this function still allows for negative
bond lengths, it does allow for molecular dissociation at long bond lengths.

The force constant for the Morse potential is determined by evaluating the second
derivative of the potential energy function at the potential minimum.
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d2
k=WU(V)

r=r,

Based on the expression given above for the Morse potential, the following result is obtained.
k=2D,p
Anharmonicity

A solution to the Schrédinger equation using the Morse potential produces an additional
constant in the energy expression for vibrational energy.

G, =a,0v+ ) -ax,v+ )

The new constant, wex., is called an anharmonicity constant, as it accounts for deviation from
the harmonic potential. For a more general potential energy function, the expression for the
vibrational term value can be expressed as a longer power series in (v+2).

G =0,0v+ ) -0x,0+1) +oy,+ )5 +

For well-behaved molecules, the magnitude of the anharmonicity constants decreases with
increasing order in (v+%2). Thus, the series can be truncated at some point and will provide an
adequate model for the purposes of fitting experimental data.

Vibrational Spectroscopy Techniques

Infrared and Raman spectroscopy are two experimental methods that are commonly used
by chemists to measure vibrational frequencies (w.). Infrared spectroscopy generally involves
direct absorption whereas Raman spectroscopy involves scattering of light.

Infrared Spectra

Infrared spectroscopy is a commonly used technique in the identification of molecular
compounds. It is also a very convenient technique to use in determining molecular force
constants, since the spectrum records vibrational frequencies.

Based on the results of the harmonic oscillator problem, the selection rules for an infrared
spectrum are determined to be
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That means that as a molecule absorbs or emits a single infrared photon (meaning the electronic
state of the molecule does not change) the vibrational quantum number can go up or down
(depending on absorption or emission) by one quantum. For a typical experiment, the theory
predicts a single band in the spectrum of a molecule, and that band will be centered at a
frequency equal to [ for the molecule.

A schematic diagram of a typical infrared absorption spectroscopy experiment is shown
below. The light is produced at the source (typically an incandescent light bulb or a glowbar),
passes through the sample where some of the light can be absorbed, and then the monochrometer
(which is typically either a grating or an interferometer) which is used to distinguish between the
various frequencies of light, and finally the light is detected by a detector. Plotting detected
intensity as a function of frequency produces the spectrum.

Light — Sample _ Monochrometer %»E::;
Source

Detector
| —
—]
| ——1

Determining a Force Constant

Consider the experimentally determined we value for carbon monoxide (CO.) The
spectrum shows a strong absorption at 2143 cm™ due to CO. Using this value for oe (it is
actually a little off due to anharmonicity), the force constant can be determined for the molecule.

1 |k
W, =—_|—
2mc \ u

Using a value of 1.14 x 1072¢ kg for the reduced mass of the molecule, the force constant is found
to be 1856 N/m. The literature value for this force constant is 1860 cm™. Given that this
calculation did not treat anharmonicity, the agreement is pretty good!

Progressions in Electronic Spectra

Electronic transition in diatomic molecules which can be observed in the visible and
ultraviolet regions of the spectrum can have a great deal of vibrational structure as the molecule
is free to vibrate in both the upper and lower states. The following figure shows vibrational
progressions in the emission spectrum of AIBr near 2800 A (Fleming & Mathews, 1996).
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FLEMING AND MATHEWS
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FIG. 1. A-X ftransition of AlBr near 2800 A

These progressions can be analyzed to provide dissociation energies for the electronic states
involved in the transition.

If the vibrational energy function is truncated at the [1cxe level (as predicted by the Morse
potential) the vibrational term value will reach a maximum value at some value of v. Any
further vibrational excitation is predicted to lower the molecular energy. This is actually the
dissociation limit. Therefore, the maximum value of v for a bound state (vmax) 1s the largest
value of v for which the vibrational energy spacing is positive. The dissociation energy of the
molecule is then given by the sum of vibrational energy spacings from v=0 to v=vmax.

Determining a Dissociation Energy

To find the value of the dissociation energy, it is convenient to define the difference between
successive vibrational terms as

AG\H—% = Gv+1 - Gv

Using the expression for Gy as predicted by the Morse potential,
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AGV+% = a)e(v+%)_a)e'xe(v+%)2 —a)e(V+%)—a)exe(v+%)2
:we(v+%—v—%)—a)exe(v2 +3v+ Y-’ —v—%)
)

=0, -o,x,2v+2

=w, - 20,x,(v+1)

Birge Sponer Plot

AGv+1/2

T T ~ !

0 5 10 15 20
(v+1)

This suggests that a set of values of AGv+; vs. (vt+)2) should yield a straight line with a
slope equal to -2weXe and an intercept equal to we. And vmax 1s determined by setting AGy+; to
zero and solving for v.

The Birge-Sponer method (Gaydon, 1946) can be used to determine the sum of
vibrational spacings, and thus the dissociation of a molecule. The method involves plotting
AGy+y vs. (vt+1). The dissociation energy is taken as the area under the curve.

Vibrations of Polyatomic Molecules

Nonlinear molecules have 3N-6 vibrational degrees of freedom, where N is the number of
atoms in the molecule. Thus, a triatomic molecule such as water has three vibrational degrees of
freedom. These account for the three vibrational modes of water (symmetric stretch, bend and
antisymmetric stretch.)
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>

Each mode will have a characteristic frequency. If each mode is treated as a harmonic
oscillator, the total vibrational energy is given by

3N-6

G=2 o, +})

where o is the frequency of the i vibrational mode, and v; is the quantum number indicating the
number of quanta of the i mode excited. If anharmonicity is to be included, the expression
becomes

3N-6 3N-63N-6

G=2 o0 +%-2 25, + 5, + 1)

=l j=l

where xij is he anharmonicity term that couples the vibrational modes.

Group Theory Considerations

Group theory provides a powerful set of tools for predicting and interpreting vibrational
spectra. In this section, we will consider how Group Theory helps us to understand these
important phenomena.

Transformation of Axes and Rotations

It is possible to determine the symmetry species or irreducible representation by which
each of the three Cartesian coordinate axes transform. This is useful, particularly in determining
selection rules in spectroscopy, as the components of a molecule’s dipole moment will transform
as these axes. The rotations are also useful in understanding the rotational selection rules.

Recall the character table for the Cay point group.
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Cxw | E | C| ov| oV
A1 1 1 1 1
1
1
1

A2 1 -1 -1
B1 -1 1 -1
B2 -1 | -1 1

It is useful to determine how each axis (X, y and z) is transformed under each symmetry
operation. Once this is done, it will be easy to determine the representation that transforms the
axis in this way. A table might be useful. Recalling our designation of the oy operation as
reflection through the xz plane, it can be shown easily that the axes transform as follows:

Cv|E G o o
x [ x x x =x
y y ¥y -y y
z |z z z z

The z-axis is unchanged by any of the symmetry operations. Another way of saying this
is that the z-axis is symmetric with respect to all of the operations. (In this point group, all of the
symmetry elements happen to intersect on the z-axis, which is why it is unchanged by any of the
symmetry operations.) The conclusion is that the z-axis transforms with the A representation.

The other axes can be described the same way. Note that the x-axis is symmetric with
respect to the oy operation and the E operation. (Everything is symmetric with respect to the E

operation, oddly enough.) The x-axis is antisymmetric, however, with respect to the 6" and C»
operations. The results for all axes can be summarized in the character table.

Cw | E | C| ov | o

A1l 1 1 1 1 z
A2 1 1 -1 -1

B1 1 -1 1 -1 X
B: |1 |-1]-1]1 [y

Rotations about the x, y and z axes can be characterized in a similar fashion. Consider
the angular momentum vector for each rotation and how it transforms. Such a vector can be
constructed using he right-hand rule. If the fingers on your right hand point in the direction of
the rotation, your thumb points in the direction of the angular momentum vector.

Rotation about the z-axis (R;) is symmetric with respect to the operations E and C», but
antisymmetric with respect to operations 6y and ¢,’. Rotation about the x-axis is symmetric with
respect to E and C,. Clearly, this operation transforms as the irreducible representation Ao.
Rotation about the x-axis and y-axis can also be characterized as following the properties of the

B> and B representations respectively. As such, the character table for Cay can be augmented to
include this information.
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Cw|E | C | ov| o

A1 1 1 1 1 z

Az 1 1 -1 -1 R,
B1 1 | -1 1 -1 X Ry
B2 1| -1 ] -1 1 y Rx

Another interpretation of the transformation of the x, y and z-axes is that the
representations that indicate the symmetries of these axes in the point group also indicate how
the px, py and p, orbitals transform. The set of d orbital wavefunctions can also be used. These
transformations are generally given in another column in the character table. (This information
is also useful for calculating polarizabilities, and hence selection rules for Raman transitions!)

Cw |E | C2|ov| o

A1 1 1 1 1 z x>-y?, 722
A |1 1 | -1 ] -1 Rz Xy
B1 1| -1 1 -1 X Ry XZ

B | 1] -1]-1 1 y Rx yz

Characterizing Vibrational Modes

Vibrational wave functions describing the normal modes of vibrations will be
eigenfunctions of the symmetry properties of the group. As such, group theory can be quite
useful in determining the vibrational selection rules needed to predict infrared spectra.

The number of vibrational degrees of freedom for a molecule is given by (3N-6) if the
molecule is non-linear and (3N-5) if it is linear. In these expressions, N is the number of atoms
in the molecule. One way to think of these numbers is that it takes 3N Cartesian coordinates (an
X, y and z variable) for each atom in the molecule to fully specify the structure of a molecule. As
such, 3N is the total number of degrees of freedom.

Since the molecule can translate through space in the x, y or z directions, three (3)
degrees of freedom belong to translation. One can also think of these three degrees of freedom
being the three Cartesian coordinates needed to specify the location of the center of mass of the
molecule — or for the translation of the center of mass of the molecule.

For non-linear molecules, rotation can occur about each of the three Cartesian axes as
well. So three (3) degrees of freedom belong to rotation for non-linear molecules. Linear
molecules only have rotational degrees of freedom about the two axes that are perpendicular to
the molecular axis (which remember is the Cw axis — and thus the z-axis.) So linear molecules
only have two (2) rotational degrees of freedom.

The sum of the irreducible representations by which the vibrational modes transform can
be found fairly easily using group theory. The first step is to determine how the three Cartesian
axes transform under the symmetry operations of the point group. As an example, let’s use water
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(H20), which belongs to the Cay point group since it is familiar. Later, we will work though a
more complex example.

Consider the character table for the Cay point group.

Cyw |E | C2|ov| o

A1 1 1 1 1 z x2-y?, 7%
A |1 1 | -1 ] -1 Rz Xy
B 1| -1 1 -1 X Ry XZ

B | 1] -1]-1 1 y Rx yz

The sum of the representations by which the axes transform will be given by B1 + B2 + Aj.

Cav E | C|ov| o
I' A1 1 1 1 1 z
I B 1 -1 1 -1
I's B2 1 -1 | -1 1 y
Ixyz Al +B1 + B2 3 -1 1 1

The reducible representation ([xy,) is then multiplied by the representation generated by
counting the number of atoms in the molecule that remain unmoved by each symmetry element.
This representation for water is generated as follows:

Cay E C v v’
(; & <sz Z G& O
TR N I I /7 \
H:2 & - - &
runmoved 3 1 1 3 H 1 H 2

The reducible representation that describes the transformation of the Cartesian

coordinates of each of the atoms in the molecule are given by the product of I'xyz * T'unmoved as
shown in the following table.

Cay E | C|ov| oV
xyz 3 -1 1 1
Tunmoved 3 1 1 3
Ttotal = I'xyz * Tunmovea | 9 -1 1 3

Note that the order of I'totar is given by 3N. This is the sum of representations needed to
describe the transformation of each of the Cartesian coordinates for each atom. fthe

representation for the Cartesian coordinates (I'xy,) is subtracted from [oral, the remainder
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describes the sum of representations by which the rotations and vibrations transform, and this
result should be of order (3N-3). Let’ssee. ..

Cav E | C| ov| o
Ttotal 9 -1 1 3
Ixyz 3 -1 1 1
Ivib+rot 6 0 0 2

So far, so good. Now let’s subtract the sum of the representations by which the rotations
transform. The remainder of this operation should be of order (3N-6) and give the sum of
irreducible representations by which the vibrations transform.

Cav E | C | ov| o
rvib+r0t 6 0 0 2
rrot 3 - 1 - 1 - 1
I'viv 3 1 1 3
Cw | E|C|ov /| o
A1 1 1 1 1
A1 1 1 1
B: 1 | -1 ] -1 1
Tvib | 3 1 1 3

A quick calculation shows that this result is generated by the sum of A; + A + Ba. To see
this, we can use the Great Orthogonality Theorem. (I told you it was great!) In this case, the
number of vibrational modes that transform as the it4 irreducible representation is given by the
relationship

1
N, = _ZZi(R)Zvib(R)
h%
For the A representation, this sum looks as follows.

N, = %(zAl (E)- 2 (E)+ 2, (C) 2 (C) + 2, (0) 2 (0) + 24 (6))- 2n(0)))

= %((1) -3)+M)-M+1)-M)+1)-(3))

The result for the Az representation should come to zero since no vibrational modes transform as
Az. For the A representation, this sum looks as follows.
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N, =i((l)-(3)+(1)'(1)+(—1)'(1)+(—1)'(3))

For B and B> the sum looks as follows:

Ny =5 (- +ED-O+D- D+ (D)

Let’s see if that makes sense! Consider the three normal-mode vibrations in water. These (the
symmetric stretch, the bend and the antisymmetric stretch) can be depicted as follows:

T
O S <0
/7N N /7N

/H H\ H  H /H H\

It is fairly simple to show that the symmetric stretch and the bending mode both transform as the
A representation. Similarly, the antisymmetric stretching mode transforms as the B>
representation. (Note that we have chosen the xz plane (or the [y plane) to lie perpendicular to
the molecule!)

Example: Find the symmetries of the normal vibrational modes of ammonia.

Solution: Recall the character table for the Csy point group:

Gy |E|2C3 3ov

A |1 1 1 z

A |1 1 -1 R,
E 2| -1 0 XY | Ry, Ry
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The representation for 'l can be found in the same way as before. Once we have otal, Ivib 1S
determined as before.

Csy E |[2Cs |30y
Taye 3] 1 ]
I"unmoved 4 1 2
Ttotal 12 1 2
Csv E |2Cs |30y
rtotal 12 1 2
Taye 3 1 1
I'rot 3 0 -1
Tvib 6 0 2

The GOT can be used to find how many modes of each symmetry are present.

Freq.

Mode (cm) Sym.
H~
Umbrella | ¢ "H | 1139 Al
H4N,
H H
Bend T 1765 E
HfN“H
H-
~H2N
W H
Antisym. o 3464 B
Str. k_HjN\
HH
A
~H2N
Sym.Str. | T ¢ H, | 3534 A
w

N, =é[(1)~(6)+2(1)-(0)+3(1)-(2)] N, =é[(l)-(6)+2(1)-(0)+3(—1)'(2)]

:%(12):2 ==(0)=0
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Ng = é[(2)-(6)+2(—1)~(0) +3(0)-(2)]
1
_gan_z

So there are two (2) A1 modes and two (2) doubly degenerate E modes of vibration. These can
be summarized in the table to the right.

Another Example: The vibrational modes of SF4

SF4 is an example of a molecule with a “see saw” geometry. It belongs to the point group

Cyy like water. Let’s find the symmetries of the normal modes of vibration using group theory.
First, we must generate ['total.

Cay E C Ov ov’
Cov LR 10 o o T | 15 [ -1 ] 3 | 3
Txy 3 -1 1| 1 Tow [ 3 [ 1] 1
I'unmoved 5 1 3 3 Trot 3 -1 -1 -1
rtotal 15 -1 3 3 Fvib 9 1 3 3

Now, subtract I'xy, and I'roc to generate I'vi, as shown above.

So this implies that there are nine degrees of freedom due to vibration. This is the result
we expect since for the 5-atom non-linear molecule, (3N-6) =9. To generate the number of

vibrational modes that transform as the A; irreducible representation, the follow expression must
be evaluated.
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Ny = (B 2BV + 2, (C) 2C+ 24,0) 2@+ £, (0 2(@)

= %((1) @)+ M) )+D)-B)+1)-(3))
1

—2(16)

—4

Similarly,

N, :%((1)-(9)+(1)-(1)+(—1)-(3)+(—1)-(3)) Ny, :i((l)'(9)+(—1)-(1)+(1)-(3)+(—1)'(3))

N¢=§my®w+4ym+enw$+m«$)
(8)=2

L
4

So there should be 4 vibrational modes of A; symmetry, 1 of A2 symmetry and two each
of B1 and B, symmetry. A calculation of the structure and vibrational frequencies in SF4 at the
B3LYP/6-31G(d) level of theory' yields the following.

Mode Freq. (cm™) ‘ Symmetry Mode Freq. (cm™) ‘ Symmetry

1 189 Al 6 584 Al
2 330 B 7 807 B>
3 436 Ao 8 852 B
4 487 Al 9 867 Al
5 496 B>

The calculation also allows for the simulation of the infrared spectrum of SFa.

! Calculation performed using Gaussian 98 (http://www.gaussian.com/) using the WebMO (http://www.webmo.net/)
web-based interface.
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What would be exceptionally useful is if group theory could help to identify which vibrational
modes are active — or if any are inactive. Fortunately, it can! (And now how much would you
pay?) The tools for determining selection rules depend on direct products.

Intensity

Group theory provides tools to calculate when a spectral transition will have zero
intensity, and this will not be seen. In this section, we will se how group theory can help to
determine the selection rules that govern which transitions can and cannot be see.

Intensity oc ‘ I (l//')* ,Zz(t//")dz"2

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude
squared of the transition moment matrix element.

By knowing the symmetry of each part of the integrand, the symmetry of the product can
be determined as the direct product of the symmetries of each part ([1°)", (1) and [1. This is
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helpful, since the integrand must not be antisymmetric with respect to any symmetry elements or
the integral will vanish by symmetry. Before exploring that concept, lets look at the concept of
direct products.

This is a concept many people have seen, in that the integral of an odd function over a
symmetric interval, is zero. Recall what it means to be an “odd function” or an “even function.

Symmetry \ definition \ Intensity
Even f(-x) = f(x) j F(x)dx = 2j0“ F(x)dx
0dd f(-x) = -f(x) j F(x)dx=0

Consider the function f(x) = (x3 — ?ﬂ))c)e_’(2 . A graph of this function looks as follows:

1.5
| f (x)=(x3—3x)e"'z
0.5\+
I T 0 T T
-3 -1 1 3
-0.5 +
-1
-1.5 -

One notes that the area under the curve on the side of the function for which x > 0 has exactly the
same magnitude but opposite sign of the area under the other side of the graph. Mathematically,

fa f(x)dx = fa f(x)dx + I: f(x)dx

=— jo" F(x)dx + j: F(x)dx
=0

It is also interesting to note that the function f(x) can be expressed as the product of two
functions, one of which is an odd function (x* —3x ) and the other which is an even function (

e~ ). The result is an odd function. By determining the symmetry of the function as a product
of the eigenvalues of the functions with respect to the inversion operator, as discussed below,
one can derive a similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator
(in one dimension) affects a change of sign on x.
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if (x)= f(=x)

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either
+1 or —1. For the function used in the previous example,

S (x) = g(x)h(x)
where
g(x)=x"-3x and h(x) = e

Here, g(x) is an odd function and h(x) is an even function. The product is an odd function. This
property is summarized for any f(x) = g(x)h(x), in the following table.

f(x) | igx)=_g(x) h(x)=_h(x) ifx)=_f(x)

even | even | even 1 1 1
even odd odd 1 -1 -1
odd odd | even -1 -1 1

Note that the eigenvalue (+1 or —1) is simply the character of the inversion operation for
the irreducible representation by which the function transforms! In a similar manner, any
function that can be expressed as a product of functions (like the integrand in the transition
moment matrix element) can be determined as the direct product of the irreducible
representations by which each part of the product transforms.

Consider the point group Cay as an example. Recall the character table for this point group.

Cay E C Ov oy’

Al | | | | z x>-y?, 722
A |1 1 | -1 -1 Rz Xy

Bi 1| -1 | -1 X Ry XZ
B | 1] -1]-1 1 y Rx yz

The direct product of irreducible representations can by the definition
lpmd (R) = ZI(R) . ZJ(R)

So for the direct product of B1 and Ba, the following table can be used.

Cn |E|C] o] o]
Bi |1 |-1] 1] -]
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lel
B®B:| 1| 1 [-1]-1]

The product is actually the irreducible representation given by A! As it turns out, the
direct product will always yield a set of characters that is either an irreducible representation of
the group, or can be expressed as a sum of irreducible representations. This suggests that a
multiplication table can be constructed. An example (for the Cay point group) is given below.

Cxw |A1]| A2 | B1 | B2
A1 |A1| A | Bi | B
A2 |A2| AL | Bo | By
Bi |Bi | B | Al | A
B | Bo| Bi | Ay | A

Studying this table reveals some useful generalizations. Two things in particular jump from the
page. These are summarized in the following tables.

A|B 1 |2
A |lA|B 1 ]1 ]2
B |B|A 1

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric
symmetric*antisymmetric = antisymmetric
antisymmetric*antisymmetric = symmetric

Noting that A indicates an irreducible representation is symmetric with respect to the C,
operation and B indicates that the irreducible representation is antisymmetric . . and that the
subscript 1 indicates that an irreducible representation is symmetric with respect to the [y
operation, and that a subscript 2 indicates that the irreducible representation is antisymmetric . .
the rest seems to follow! Some point groups have irreducible representations use subscripts g/u
or primes and double primes. The g/u subscript indicates symmetry with respect to the inversion
(7) operator, and the prime/double prime indicates symmetry with respect to a [] plane (generally
the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for
products involving doubly degenerate representations? As an example, consider the Csy point
group.

Csww|E| 2C3 | 3ov Cswv |E| 2Cs | 3ov
Al |1 1 1 z Az 1 1 -1
A |1 1 -1 R, E 2 -1 0
E |2 -1 0 x,y) | (Ry, Ry) A2®E | 2 -1 0
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Consider the direct product of A; and E.

This product is clearly just the E representation. Now one other example — Consider the product
E®E.

Cwv |E| 2Cs | 30v
E 2 -1 0
E 2 -1 0

E®E | 4 1 0

To find the irreducible representations that comprise this reducible representation, we
proceed in the same manner as determining the number of vibrational modes belonging to each
symmetry.

N, =@ +2000 +300)]-1
N, = % (D) +2(1)(1) + 3 D©O)] =1

N, = é [(2)(@) +2(-1)(1) +3(0)(0)] =1

This allows us to build a table of direct products. Notice that the direct product always has the
total dimensionality that is given by the product of the dimensions.

Cswv | A1 | A2 E
Al | Al | A E
A | A | Ay E
E E E A+ A+E

Now that we have a handle on direct products, we can move on to selection rules.

Selection Rules

According to quantum mechanics, transitions will only be allowed (have non-zero
2
intensity) if the squared magnitude of the transition moment (U v'*uy"d r‘ ) is not zero. If the

integral vanishes by symmetry, obviously the transition moment will have zero magnitude and
the transition is forbidden and will not be seen. In order to determine if the integral vanishes by
symmetry, it is necessary to determine the symmetry by which the dipole moment operator
transforms.
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This (4 ) is a vector operator and can be decomposed into X, y and z components. As such, the

transition moment is also a vector property that can have x-, y- and/or z-axis components.
Clearly, it will be important to determine how the three axes transform. Fortunately, this
information is contained in character tables! Consider the following two point groups, Csy and
C2v.

Cw |E| 2C3 | 30v Cyv | E | C| ov | o
A |1 1 1 z A1 1 1 1 1 z
Ax | 1 1 -1 R, A2 1 1 -1 -1 R,
E |2 -1 0 x,y) | (R, Ry) B1 1 | -1 1 -1 X Ry
B: 1| -1 ] -1 1 Y Rx

In the case of Cay, it is clear that the x-, y- and z-axes transform as the By, B> and A; irreducible
representations respectively. In the case of Ciy, the z-axis transforms as A, but the x- and y-axes
come as a pair and transform as the E irreducible representation. It will always require two axes
to complete the basis for a doubly degenerate representation.

Under the Cay point group, any vector quantity will transform as the sum of A1+B1+B; as we saw
for I'yy, before. Further, one can say that the x-axis component transforms as B, the y-axis
component as B> and the z-axis component as A;. By a similar token, under the Csy point group,
a vector quantity transforms as the sum of Aj+E. The z-axis component transforms as A and the
x- and y-axis components come as a pair that transform by the E representation. All that is
needed to complete the picture is to determine the symmetries of the upper and lower state wave
functions.

Infrared Active Transitions

In order for a spectral transition to be allowed by electric dipole selection rules, the transition
moment integral must not vanish.

[v" pyrdr

This can be determined by using the irreducible representations by which the two wavefunctions
transform and the three components of the transition moment operator, which will be x, y and z.

[T, r.r,.de

If the direct product of the integrand does not contain at least a component of the totally
symmetric irreducible representation, the integral will vanish by symmetry.

Example: The three vibrational modes of H>O transform by A; (symmetric stretch), A (bend)
and B> (antisymmetric stretch.) Will the symmetric stretch mode be infrared active?
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Solution: For the symmetric stretch, which transforms as A1, the transition moment integrand
will be have symmetry properties determined by the product

X B,
vy " 4| B, |4,
z A

1

where one of the irreducible representations from the set in the middle of the product may be
used. (They are the irreducible representations by which the x, y and z axes transform.) In this
case, the z-axis must be used.

ArArAi=A
This is the only component that will not vanish.

When the z-axis component must be used to make the transition moment operator not vanish, the
transition is said to be a parallel transition. Transition moments that lie along axis perpendicular

to the z-axis are said to be perpendicular transitions. Parallel and Perpendicular Transitions often
have very different selection rules and thus very different band contours.

Another Method

Another method that can be used to see if a mode is infrared active is to take the direct
product of the irreducible representations of the wavefunction, and use Iy, for the transition
moment. If the resulting product has a component that is totally symmetric, the mode will be
infrared active.

Example: Is the antisymmetric stretch mode of water predicted to be infrared active?
Solution: This mode transforms as the B; irreducible representation. I'xy. is given by

nyz:Bl + B+ A

So:
CZV E C2 Oxz Gyz
B> 1 -1 -1 1
rxyz 3 - 1 1 1
[ 3 1 -1 1
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The resulting reducible representation will have a component of the totally symmetric irreducible
representation.

ArTpoa=(1)B)+ (D)) + (D) +(1)(1)=4

So the A irreducible representation appears once in the product reducible representation. In
fact, the component that does not vanish is due to the presence of B> in I'xy,. Hence, the
transition is predicted to be a perpendicular L transition, since the transition moment lies along
the y-axis.

Example: Will the E modes in NH3 be infrared active?

Solution:
In the Csy point group, ['xy; is given by A; + E

Csy E 2C;3 3oy
E 2 -1 0

| 3 0 1

I prod 6 0 0

[prod clearly has the totally symmetric irreducible representation as a component.
A1 prod = (1)(6) +2(1)(0) + 3(1)(0)=6

In fact, it is the E component of I'xy, that makes this transition allowed (and so it is a
perpendicular (1) transition.

Cw | E 2C 30
E | 2 -1 0
E | 2 1 o0

Tood | 4 1 0O

AT proa = (1)(4) +2(1)(1) + 3(1)(0) =6

Vibrational Raman Spectra

Vibrational Raman spectroscopy is often used as a complementary method to infrared
spectroscopy. The selection rules for Raman spectroscopy can be determined in much the same
way, except that a polarizability integral must be used. The polarizability operator can be
expressed as a 3x3 tensor of the form
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R

xy Xz
a}’y ayz
azy zz

This tensor is symmetric along the diagonal, and the elements transform in the same ways as the
functions x?, y?, z°,xy, xz and yz.

Example: What are the vibrational mode symmetries for the molecule H2CCH> which
transforms as the Don point group? Which modes will be infrared active? Which will be Raman

active?

Solution:

Set up the vibrational analysis table in the usual manner.

Don E Cz(Z) CZ(Y) CZ(X) 1 Oxy Oxz Oyz
A 1 1 1 1 1 1 1 1 x% y% z
Big| 1 1 -1 -1 | 1 -1 -1 Rz Xy
By | 1 -1 1 -1 1 -1 1 -1 Ry XZ
Bsg | 1 -1 -1 1 1 -1 -1 1 Rx yz
Au 1 1 1 1 -1 -1 -1 -1
Bu| 1 1 -1 -1 -1 -1 1 1 z
Baw | 1 -1 1 -1 -1 1 -1 1 y
Bsu ] 1 -1 -1 1 -1 1 1 -1 X
Oz || 3 -1 -1 -1 -3 1 1 1
Tt | 3 -1 -1 -1 3 -1 -1 -1
Don E G2 Gy Cx i Oxy  Oxz Oyz
Crm || 3 -1 -1 -1 -3 1 1 1
Lum | 6 0 0 2 0 6 2 0
Tot | 18 0 0 -2 0 6 2 0
O || 3 -1 -1 -1 -3 1 1 1
15 1 1 -1 3 5 1 -1
T rot 3 -1 -1 -1 3 -1 -1 -1
Tviv | 12 2 2 0 0 6 2 0
Decomposing to the individual components:
Don E Ca(z) Caoy) Cax) 1 Oxy Oxz. Oy, sum | #(h)
AgTv [(D(A2) (D2) (DHE@) (1D)O) (1)0) 1)) (1)2) ((1)O) [ 24 3
BigTvio [ (D(12) (D@) D@) DO (DHO) 1)) (-1)@2) 1)O0)] 16 2
BoxTuio [ (D(12) (-D2) (D) (DO (1)O) 1)©) ()2 D©)| 8 1
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BsgTwip | (D(12) (-D2) (-DE) (DO) (1)O) ¢1)6) D) (1)O)| 0 0
AvTvip [(DA2) (D) (D)  (DO) DO) ¢1)6) -DE) DO 8 1
BiuTvi [ (D(12)  (1)2) D) DO DO) (-D©G) (DHER) (1)0) | 8 1
BouTviv | (D(2) (-D2)  (DH2) ¢1)(O0) ¢-1)0) (1)©6) (-DH(@) (1)O) [ 16 2
BsuTwip | (D(12) (-DR) DE) (DO) ¢D)O) (1)©6) (DHE2) DHO)| 16 2

So

Of these, the 6 gerade modes will be Raman active, and the five By modes (n =1, 2, 3) will be
infrared active. The Ay mode will be dark.
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Problems

1. For each molecule, calculate the reduced mass (in kg) and the force constant for the bond (in
N/m).

Molecule | @ (cm™) | n (kg) k (N/m)
'"H”Br 2648.975
3Cly 559.72
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12C'%0 2169.81358
¥GaCl 365.3

2. The typical carbonyl stretching frequency is on the order of 1600-1900 cm™. Why is this
value smaller than the value of . for CO given in the table above?

3. The first few Hermite polynomials are given below.

v Hu(y)

0 |1
1 |2y
2 | 4y*-2

Hy+1(y) = 2yHy(y) — 2vHy-1(y)

a. Use the recursion relation to generate the functions H3(y) and Ha(y).
b. Demonstrate that the first three Hermite polynomials (Ho(y), Hi(y) and Hx(y)) form an
orthogonal set.

4. The Morse Potential function is given by

U(x) = D (1 — e F¥)
where x = (r — re).

a. Find an expression for the force constant of a Morse Oscillator bond by evaluating

b. For 'H*Cl, D. =7.31 x 107 Jand B = 1.8 x 10! m"!. Use your above expression to
evaluate k for the bond in HCI.

c. On what shortcoming of the Harmonic Oscillator model does the Morse Potential
improve? What shortcoming does the Morse model share with that of a Harmonic
Oscillator?

5. The following data are observed in the vibrational overtone spectrum in 'H3*C1 (Meyer &
Levin, 1929).

VeV 17obs (Cm-l)
10 2885.9
2«0 5666.8
30 8347.0
40 10923.1
50 13396.5

From these data, calculate a set of AGv+12 values. Fit these results to the form
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to determine values for . and wexe for HCI.

AG

17+E

1= We — 2 weX,(V+1)

6. The following wavenumber frequencies are reported for the band origins for the 1 — v” bands
in an electronic transition of a diatomic molecule. Using the Birge-Sponer method, determine

the dissociation energy of the molecule in its ground electronic state.

V" ‘

Wavenumber (cm™)

19586.9

AGv+172 (em™)

19522.3

19504.8

19465.9

19418.3

19375.1

19323.2

19275.7

19223.8

19167.6

19111.4

19050.9

18990.4

18925.6

18860.7

18795.9

18722.4

18653.3

18579.8

18506.3

27

18428.5

18342.1

18259.9

18177.8

18091.5

17996.3

17909.8

17814.8

17719.7

17624.6
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