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Chapter 5: The Rigid Rotor and Rotational 
Spectroscopy 
 

 One of the most powerful tools for elucidating molecular structure is the analysis of 

rotationally resolved molecular spectra. These can be observed in the microwave, infrared, and 

visible/ultraviolet regions of the spectrum. The rigid rotor (or rigid rotator) problem provides 

the idealized model that chemists use to describe the rotational motion of a molecule. In this 

chapter, we will explore the quantum mechanical model of a rotating body, and apply the results 

to lay the foundation for an understanding of the rotational structure in molecular spectra. We’ll 

look at the shortcomings of the model when applying it to real molecules (which as we saw in 

the previous chapter, do not have rigid bonds!) and apply these results to the interpretation of 

pure rotational spectra (generally found in the microwave region of the spectrum) and rotation-

vibration spectra (accounting for the rotational structure that is observed in infrared spectra of 

molecules.) 

 

Spherical Polar Coordinates 
 

The description of a rotating molecule in Cartesian 

coordinates would be very cumbersome.  The problem is actually 

much easier to solve in spherical polar coordinates.  Consider a 

particle that is located in space at some arbitrary point (x,y,z).  In 

spherical polar coordinates, the position of a particle is also 

described by three variables, namely r,  and .  These variables are 

defined according to the diagram.  The distance from the origin to 

the point is specified by r.   gives the angle formed by the position 

vector of the point and the positive z-axis.  give the angle of 

rotation from the positive x-axis of the projection of the position 

vector into the xy plane.  The ranges of possible values for r,  and  are given by 
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The coordinates of any point can be transformed from spherical polar coordinates to 

Cartesian coordinates using the following equations. 

 

𝑥 = 𝑟 sin 𝜃 cos 𝜙 

𝑦 = 𝑟 sin 𝜃 sin 𝜙 

𝑧 = 𝑟 cos 𝜃 
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The coordinates can be transformed from Cartesian coordinates to spherical polar coordinates by 

these equations. 

 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜃 = tan−1 (
𝑦

𝑥
) 

𝜙 = cos−1 (
𝑧

√𝑥2 + 𝑦2 + 𝑧2
) 

 

Potential Energy and the Hamiltonian 
 

Since there is no energy barrier to rotation, there is no potential energy involved in the 

rotation of a molecule.  All of the energy is kinetic energy.  This simplifies the writing of the 

Hamiltonian.  

 In Cartesian coordinates, the Hamiltonian can be written 
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In spherical polar coordinates, the Hamiltonian can be written 
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For the rigid rotor problem, r is taken to be a constant, simplifying the operator. 
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The expression r2 is the moment of inertia for the molecule.  This value shows up often in 

problems involving the rotation of a molecule. 

I = r2 

While the expression for the Hamiltonian in spherical polar coordinates looks 

considerably more cumbersome than the Hamiltonian expressed in Cartesian coordinates, it will 

still be simpler to solve the problem describing the rotation of a molecule. 
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Solution to the Schrödinger Equation  
 

The time-independent Schrödinger equation can be written as follows. 
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Since the Hamiltonian can be expressed as a sum of operators, one in  and the other in , it 

follows that the wavefunction should be able to be expressed as a product of two functions. 

 

( ) ( ) ( ) =,  

 

Making this substitution, the equation becomes 
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With minimal rearrangement, the following result can be derived 
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And dividing both sides by ()() produces 
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This expression suggests that the sum of two functions, one only in  and the other only in , 

when added together, yields a constant.  As the two variables  and  are independent of one 

another, the only way this can be true is if each equation is itself equal to a constant.  
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where 1 and 2 are constants of separation (the form of which is chosen for convenience) which 

satisfy the following relationship. 
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Rotation in the xy plane ( = /2) 
 

We’ll tackle the equation in  first.  One way to picture this part of the equation is that it 

describes the rotation of a molecule in the xy plane only (defined by  = /2.)  Given this 

constraint, it is clear that the sin2() term becomes unity, since sin(/2) =1.  The problem then 

becomes 
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If a substitution is made for the constants on the right-hand side of the equation, 
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we get 
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which should look like a familiar problem.  Instead of using sine and cosine functions this time 

though, we will use an imaginary exponential function instead. 
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The boundary condition for this problem is that the function () must be single valued.  

Therefore 
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Dividing both sides by 
lmA  and expressing the second exponential as a product yields 
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Using the Euler relationship  

 

 sincos ie i +=  

 

we see that 

 

( ) ( ) ll mim 2sin2cos1 +=  

 

In order for this to be true, the sine term must vanish and the cosine term must become unity.  

This is true if ml is an integer, either positive or negative and including zero. 

 

ml = …, -2, -1, 0, 1, 2, … 

 

Energy Levels 
 

As such, the energy of a rigid rotator limited to rotation in the xy plane is given by 
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It is important to note that these functions are doubly degenerate for any non-zero value of ml as 

there are always two values of ml that yield the same energy. 

Normalization 
  

The wavefunctions can be normalized in the usual way. 
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As was the case with the particle in a box problem, the normalization factor does not depend on 

the quantum number.  The wavefunctions can be expressed 
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Rotation in three dimensions 
 

We are now ready to tackle the more complicated problem of rotation in three 

dimensions.  Recall the Schrödinger equation as was previously written. 
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We already know the form of the solutions for the () part of the equation.  However, 

due to the 1/sin2 term in the  equation, it is possible that the solution to the  part of the 

equation will introduce a new constraint on the quantum number mi. 

 

Energy Levels 
 

The only well-behaved functions (functions that satisfy all of the boundary conditions) 

have energies given by 
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 The quantum number l indicated the angular momentum.  ml is the z-axis component of 

angular momentum.  The z-axis is treated differently than the x- or y-axes due to the unique 

manner in which the z-axis is treated in the choice of the spherical polar coordinate system (since 

 is taken as the angle of the position vector with the positive z-axis.)  Also, as will be shown 

later, the operator zL̂ , the z-axis angular momentum component operator, has a special 

relationship with the Hamiltonian (as does the squared angular momentum operator, 2L̂ .) 

Degeneracy 
 

The interpretation of the quantum number ml is that it gives the magnitude of the z-axis 

component of the angular momentum vector.  And since no vector can have a component with a 

magnitude greater than that of the vector itself, the constraint on ml that is introduced by this 

solution is 

 

lml   
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so for a given value of l, there are (2l + 1) values of ml that fit the constraint.  And since the 

energy expression does not depend on ml, it is clear that each energy level has a degeneracy that 

is given by (2l + 1).  That can be demonstrated as in the diagram below for an angular 

momentum vector of magnitude 2 (l = 2). 

 

 
 

As can be seen in the diagram, there are five possible values of ml, +2, +1, 0, -1 and -2.  These 

five values correspond to the (2l + 1) degeneracy predicted for a state with total angular 

momentum given by l = 2 (and therefore 2l + 1 = 5).  When we see the wavefunctions in more 

detail, there will be a new reason for this constraint on the quantum number ml. 

 

Wavefunctions 
 

For convenience, we’ll first look at the solutions where ml = 0.  The wavefunctions under 

this constraint have two parts, a normalization constant and a Legendre polynomial in cos().  

The Legendre polynomials are another set of orthogonal polynomials, similar to the Hermite 

polynomials that occur in the solution to the harmonic oscillator problem.  The Legendre 

polynomials can be generated by the following relationship 

 

𝑃𝑙(𝑥) =
1
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𝑑𝑥𝑙
(𝑥2 − 1)𝑙 

 

The first few Legendre polynomials are given below. 

 

l Pl(x) Pl(cos ) 

0 1 1 

1 x cos() 

2 ½(3x2 - 1) ½[3cos2() – 1] 

3 ½(5x3 – 3x) ½[5 cos3() – 3 cos()] 

 

A recursion relation for the Legendre Polynomials is given by 
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(𝑙 + 1)𝑃𝑙+1(𝑥) = (2𝑙 + 1)𝑥𝑃𝑙(𝑥) − 𝑙 𝑃𝑙−1(𝑥) 

 

When ml = 0, the spherical harmonic function Yl
m(,) = ()() becomes just (), since the 

 dependence disappears.  The () part of the wavefunctions are given by  
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The functions are slightly different for ml ≠ 0.  In this case, the functions involve a set of 

functions that are related to the Legendre Polynomials called the associated Legendre 

polynomials.  These functions are generated from the Legendre polynomials via the following 

relationship. 
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Note that for any value of |ml| > l, the derivative of Pl(x) vanishes. 
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And this is the origin of the constraint on ml. 

The associated Legendre polynomials depend on both l and ml.  Also, given the |ml| dependence, 

the sign of ml does not matter.  (The only place that the sign of ml matter is in the () function.)  

The first few associated Legendre Polynomials are given in the table below. 
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0 0 1 1 

1 
0 x cos() 
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2 
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1 3x(1-x2)½ 3 cos() sin() 

2 3(1-x2) 3 sin2() 

 

Spherical Harmonics 
 

The rigid rotor problem was solved using the Schrödinger equation 
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As it turns out, the solutions to this equation are very important in a number of areas in 

chemistry and physics.  The eigenfunctions are known as the spherical harmonics ( ( ) ,lm

lY ) 

and they appear in every problem that has spherical symmetry.  The Spherical Harmonics satisfy 

the relationship 
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Each function ( ) ,lm

lY  has three parts:  1) a normalization constant, 2) an associated Legendre 

polynomial in cos(), and 3) an imaginary (for ml ≠ 0) exponential in . 
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The first few Spherical harmonics are shown in the table below. 
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Notice the (2l+1) degeneracy in these functions, due to the (2l+1) values of ml for each 

value of l.  Also, it is useful to not that these functions all have l angular nodes (values of  that 

cause the wavefunction to vanish.)  For the l = 1 wavefunctions, these nodes occur at  = /2 for 

ml = 0 and at  = 0 for ml = ±1.  The number of nodes in each wavefunction is a useful property 

to know when discussing how these functions related to the radial wavefunction in the Hydrogen 

atom. 
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Angular Momentum 
 

The Spherical Harmonics are involved in a number of problems where angular 

momentum is important (including the Rigid Rotor problem, the H-atom problem and anything 

else where spherical symmetry is involved.)  Angular momentum is a vector quantity that is 

given by the cross product of position and momentum.  
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This quantity can be calculated from the following determinant.  
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Substituting the operators for the components of linear momentum, the operators that correspond 

to the three components of angular momentum are  
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These can be used to determine the square of the angular momentum, which is given by the dot 

product of L


with itself.  
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Similarly, the operator for the square of the angular momentum is given by  
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In spherical polar coordinates, the angular momentum operators are given by the expressions  
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And the angular momentum squared operator is given by  
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For the Rigid-Rotator problem, it is interesting to note that the Hamiltonian is very closely 

related to the angular momentum squared operator.  
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The eigenfunctions of the 2L̂ operator are the Spherical Harmonics, ( ) ,lm

lY . These functions 

have the important properties that  
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Seeing as the spherical harmonics are eigenfunctions of all three of these operators, what is 

implied about the commutator of these two operators? 

There are important relationships between the angular momentum operators. Each of the 

operators corresponding to the components of angular momentum commutes with the 2L̂  

operator, but they do not commute with one another. This implies that one can measure the 

squared angular momentum and only one component of angular momentum. This is generally 

taken as the z-axis component of angular momentum as the z-axis has special properties due to 

the manner in which the spherical polar coordinates have been defined.  
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The commutators involving two components of angular momentum are particularly interesting. 

Consider the commutator between and xL̂  and yL̂ . 
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Let’s define each term separately and then take the difference.  
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The second, third and fourth terms are easy to simplify as the derivatives do not affect the x or z 

variables. The first term, however, requires some application of the chain rule.  
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Similarly,  
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Taking the difference will cancel all of the second derivative terms, leaving only the first 

derivative terms behind.  
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Similarly, it can be shown that 
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Application to the Rotation of Real Molecules 
 

While the spherical harmonics are the wavefunctions that describe the rotational motion 

of a rigid rotator, the names of the quantum numbers are changed to reflect the type of angular 

momentum encountered in the problem.  The quantum number l and ml should be familiar as 

these are the ones used in the hydrogen atom problem to describe the orbital angular momentum.  

However, for rotational motion, these are replaced by J and MJ.  The energy levels of the rigid 

rotator are therefore given by 

 

2

2

2
)1(

r
JJEJ




+=  

 

And since MJ does not appear in the energy level expression, each level has a (2J + 1) 

degeneracy.  The spacings between energy levels increases with increasing J due to the J(J + 1) 

dependence (which has a J2 term.)  This pattern is shown in the diagram below. 

 

 
 

Energy Levels for a Rigid Rotor
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For spectroscopic measurements, the rotational energy (given the symbol FJ) is often expressed 

in spectroscopic units, such as cm-1.  Also, a spectroscopic constant, B, is used to describe the 

energy level stack. 

 

𝐹𝐽 =
𝐸𝐽

ℎ𝑐
= 𝐵 𝐽(𝐽 + 1) 

 

where the spectroscopic constant B is given by 

 

𝐵 =
ℎ

8 𝜋2 𝑐 𝜇 𝑟2
 

 

Thus, by knowing the value of , the reduced mass, and measuring the value of B, the rotational 

constant, one can determine the value of r, the bond length.  This is the utility of rotational 

spectroscopy – it gives us detailed information about molecular structure! 

 

Centrifugal Distortion 
 

As we know, since they vibrate, real molecules do not have rigid bonds.  So it is no 

surprise to learn that the Rigid Rotor is really just a limiting ideal model, much like the ideal gas 

law describes limiting ideal behavior. 

 Real molecules, especially when rotating with very high angular momentum, will tend to 

stretch.  In other words, the average bond length will increase with increasing J.  And given the 

inverse relationship between B and bond length (r), it is not surprising that the effective B value 

is smaller at higher levels of J.  In fact, this centrifugal distortion problem is well treated by 

introducing a “distortion constant” D such that 

 

FJ = BJ(J + 1) – D[J(J + 1)]2 

 

Naturally, one would expect the distortion constant to be small in the case of a strong, inflexible 

bond, but larger if the bond is weaker.  The approximation of Kraitzer suggests that the distortion 

constant is determined to a good approximation by 

 

2

34

e

B
D


  

 

For a well behaved molecule, he distortion constant D is always smaller in magnitude than B.  

Some molecules require several distortional constants to yield a reasonable description of their 

rotational energy level stack.  If additional constants are needed, they are introduced as 

coefficients in a power series of J(J + 1). 

 

FJ = BJ(J + 1) – D[J(J +1)]2 + H[J(J +1)]3 + … 
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The power series is truncated at a point that yields a good fit to experimental observations for a 

given molecule. 

 

Spectroscopy 
 

The experimental determination of spectroscopic rotational constants provides a very 

precise set of data describing molecular structure.  To see how experimental measurements 

inform the determination of molecular structure, let’s examine what is to be expected in the pure 

rotational spectrum of a molecule first. 

 

Microwave Spectroscopy 
 

The rotational selection rule in microwave absorption spectra is 

 

J = +1 

 

(Selection rules are discussed in more detail in a later section.)  The pattern of lines predicted to 

be observed in a microwave spectrum (a pure rotational spectrum of a mole) can be derived by 

taking differences in rotational energy levels. 
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This suggests that a pure microwave spectrum should consist of a series of lines that are evenly 

spaces, the spacing between which is 2B.  It also suggests that a plot of the line frequency 

divided by (J+1) should yield a straight and horizontal line, 

 

B
J

J 2
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~
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
 

 

The inclusion of distortion yields a slightly different conclusion. 
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𝜐̃𝐽

(𝐽 + 1)
= 2𝐵 − 4𝐷(𝐽 + 1)2 

 

This suggests that a plot of  
( )1

~

+J

J
 vs. (J+1)2 should yield a straight line 

with slope -4D and intercept 2B. 

 Consider the following set of data for the microwave spectrum of 
12C16O (Lovas & Krupenie, 1974). 

A plot of 
1

~

+J

J
 vs. J yields a plot as the following. 

 

 
 

Clearly, this is not a horizontal line.  The conclusion is that centrifugal distortion is not negligible 

for this molecule.  Including distortion suggests that the plot that should be considered would 

involve 
( )1

~

+J

J
 vs. (J+1)2.  This yields the following: 

 

Microwave Spectrum of 
12

C
16

O

3.8436

3.8438

3.844

3.8442

3.8444

3.8446

3.8448

3.845

3.8452

0 1 2 3 4 5 6

J


J
/(

J
+

1
) 

(c
m

-1
)

J ~ J (cm-1) 

0 3.84503 

1 7.68992 

2 11.53451 

3 15.37867 

4 19.22223 

5 23.06506 

6 26.90701 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: The Rigid Rotor © 2022 Patrick E. Fleming 
– Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

157 

 

 
 

This does yield a straight line!  From the fit, one calculates a B value of 1.92253 cm-1 and a D 

value of 0.00000612 cm-1.  

Calculating a Bond Length from Spectroscopic Data 
 

Spectroscopic data (and microwave data in particular) provides extremely high precision 

information from which bond lengths can be determined.  Based on the above data and the 

masses of carbon-12 (12.00000 amu) and oxygen-16 (15.99491463 amu) (Rosman & Taylor, 

1998) a reduced mass for 12C16O can be calculated as 

 

kgxamu
mm

mm

OC

OC 26101385.185621.6 −==
+

=  

 

Recalling the expression for the rotational constant B 

 

228 rc

h
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=  

 

The bond length is given by 

 

Bc

h
r

 28
=  

 

Using the data from above, one calculates a bond length for CO to be r = 1.1312 Å.  This value is 

actually the average value of the bond length in the v = 0 level.  The literature value for the 

equilibrium bond length (the bond length at the potential minimum) is given by re = 1.128323 Å 
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(Bunker, 1970) which is slightly shorter (as is to be expected.)  The extrapolation of data to 

determine values at the potential minimum is discussed in a later section. 

 

Rotation-Vibration Spectroscopy 
 

Each vibrational level in a molecule will have a whole stack of rotational energy levels.  

As such, vibrational transitions will also show rotational fine structure.  This fine structure can 

be analyzed to determine very precise values for molecular structure in much the same ways 

microwave data for the pure rotational spectrum can be.  One method for analyzing this data is 

that of combination differences although direct fitting of the data will give better results 

mathematically.  Before beginning a discussion of combination differences, however, it is 

necessary to discuss selection rules.   

 

Selection Rules and Branch Structure 
 

Selection rules are determined for spectroscopic transitions as those transitions for which 

the transition moment integral does not vanish.  This is because the observed intensities of 

spectroscopic transitions are proportional to the squared magnitude of the transition moment. 

The transition moment integral is given by 

 

( ) ( )  d"'
* 

 

 

and so the intensities of transitions are given by 

 

( ) ( )
2

*
"'.   dInt


 

 

where a single prime (‘) indicates the upper state of the transition and a double prime (“) 

indicates the lower state.  The operator 


 corresponds to the change in the electric dipole 

moment of the molecule as it undergoes a transition from a state described by ” to one 

described by ’.  Other operators may be used in this expression (magnetic dipole, electric 

quadrupole, etc.) but these lead to significantly weaker transitions (by a factor of 106 or more!)  

When the electric dipole operator is used, the transitions for which the transition moment is not 

zero are said to be allowed transitions, while all others are said to be forbidden transitions by 

electric dipole selection rules.  Since other types of transitions are so weak by comparison, a 

transition that is said to be allowed or forbidden is assumed to mean by electric dipole selection 

rules unless specifically stated otherwise. 

 The selection rules for vibrational transitions are 

 

v = ±1 

 

For closed-shell molecules (molecules where all of the electrons are paired), the rotational 

selection rules are 
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J = ±1 

 

J = 0 is possible for some open-shell molecules, but his topic will be discussed in more detail in 

Chapter 7. 

 The rotational fine structure of a transition can be separated into branches according to 

the specific change in the rotational quantum number J. 

 

J  

+1 R-branch 

0 Q-branch 

-1 P-branch 

 

In Raman spectroscopy (which is an inelastic light scattering process rather than the direct 

absorption or emission of a photon, and thus follows different selection rules) O- and S-Branches 

can be observed with J = -2 and +2 respectively. 

 The spectrum of possible branches and transitions that can be observed for all possible 

molecules can be quite daunting (and take an entire graduate level course in molecular 

spectroscopy just to scratch the surface!)  For the purposes of this discussion, we will limit 

ourselves for the time being to just closed-shell molecules for which P- and R-branches can be 

observed. 

 Consider the following energy level diagram depicting the rotational energy levels in two 

different states.  The diagram shows the expected branch structure for a closed shell molecule.  

Notice that the transition lines get longer with increasing J in the R-branch, but shorter with 

increasing J in the P-branch.  The largest difference in transition energy is for successive lines in 

the spectrum is that between the R0 and P1 lines.  The band origin ( 0
~ ) will lie between these 

two lines, and is at the energy difference between the J’=0 and J”=0, the two non-rotating levels 

in the two vibrational levels.  Also notice that the rotational energy spacings in the upper state 

are smaller than those in the lower state.  This is do to a smaller B value in the upper state (v = 

1), which has a larger average bond length than the v = 0 level. 
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Combination Differences 
 

Consider the following partial energy level diagram:  
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It is clear that since the R(J) and P(J) transitions share a common lower rotational level 

(FJ), the energy difference between the R(J) and P(J) transitions gives the energy difference 

between the FJ+1 and FJ-1 in the upper state of the transition.  Similarly, the difference between 

FJ+1 and FJ-1 in the lower state is given by R(J-1) – P(J+1).  Thus, by taking differences of 

transition energies in the proper combination, dependence on one of the states can be eliminated.  

Also, the difference 2F(J) can be found.  This difference is defined by: 

  

2F(J)  FJ+1 – FJ-1 

 

Using the rigid rotator model, 

 

FJ = BJ(J+1) 

 

an expression for 2F(J) can be easily derived: 

 

1/2)4B(J

2)B(4J

J)B(J2)3JB(J

1)(J)B(J2)1)(JB(JF(J)

22

2

+=

+=

−−++=

−−++=

 

 

Thus the value of 2F(J) that can be found for either the upper or lower states by 

combination differences from the energies of the spectral lines, can be used to find the 

spectroscopic constant B. 
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4B
1/2)(J

F(J)2 =
+


 

 

And the 2F(J) values are determined by the combination differences 

 

2F’(J) = R(J) – P(J) 

2F”(J) = R(J-1) – P(J+1) 

 

were the single prime (‘) refers to the upper state and the double prime (“) refers to the lower 

state. 

 

For most molecules, the rotational distortion constants are not negligible.  In this case, the 

rotational term values are given by 

 

F(J) = BJ(J+1) – DJ2(J+1)2 + HJ3(J+1)3 + … 

 

Neglecting terms of higher order than DJ2(J+1)2 (since these terms are small for most molecules) 

the combination differences relationship can be derived as 
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It would be convenient if the term involving D could be factored.  Recognizing that 

 

(J+1/2)3 = J3 + 3/2J2 + 3/4J + 1/8 

 

the “cube” can be “completed” by 
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And by dividing through by (J+1/2) 

 

22 1/2)8D(J6D][4B
1/2)(J

F(J)
+−−=

+


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So using the spectral data, a plot of  

 

2

2

1/2)(J    vs.
1/2)(J

1)P(J-1)-R(J

1/2)(J    vs.
1/2)(J

P(J)-R(J)

+
+

+

+
+

or  

 

should yield straight lines with slopes of 8D and an intercept of (4B – 6D) for the upper and 

lower states respectively. 

 

Additional Spectroscopic Constants 
 

Since each vibrational level has a different average bond length (increasing with 

increasing vibrational quantum number for a well-behaved electronic state,) the rotational 

constant has a dependence on the vibrational quantum number v. 

 

( ) ( ) ++++−=
2

2
1

2
1 vvBB eeev   

 

where Be is the equilibrium value of the rotational constant (and the constant from which re is 

derived), e and e are constants that describe how rotation and vibration are coupled in a 

molecule.  Usually this power series in (v + ½) can be truncated at the e term (unless data for a 

great many vibrational levels are known.) 

 Similarly, the distortional term can be expanded in a power series in (v + ½). 

 

( ) ++−= 2
1vDD eev   

 

For most molecules, e is not determined within experimental uncertainty unless a great many 

vibrational levels have been included in the fit. 

 A typical methodology would be to determine Bv for all of the vibrational levels for 

which data exists.  (A single vibration-rotation band analysis provides two values, one for the 

upper state and one for the lower state.)  Then the Bv values are fit to the functional form given 

by  

 

( ) ( ) ++++−=
2

2
1

2
1 vvBB eeev   

 

truncating the power series so as to include the minimum number of adjustable parameters as are 

needed to yield a good fit to the data.  This process yields a value for Be which can then be used 

to calculate re.  These values can then be compared to those found in the literature (if such a 

value has been measured) or reported in the literature if it has not yet been measured!  A similar 

approach is used for the distortional term(s). 
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Line Intensity in Rotational Structure 
 

One element that we have not discussed in the subject of rotational spectroscopy (or the 

rotational fine structure in vibration-rotation spectroscopy) is the intensities of the spectral lines.  

The intensity will be determined by two factors: 1) the population of the originating state (lower 

state in absorption and upper state in emission spectra) which is well described for a thermalized 

sample by a Maxwell-Boltzmann distribution, and 2) the line strength, which is determined by 

the quantum mechanical relationship between the upper and lower states of the transition. 

 

the Maxwell-Boltzmann Distribution 
 

The Maxwell-Boltzmann distribution of energy level populations will be achieved by any 

system that is in thermal equilibrium (usually implying that a sufficient number of molecular 

collisions occur for a gas phase sample, or that all of the parts of a sample are in thermal contact 

with one another in condensed phase samples) to ensure thermal uniformity throughout the 

sample.  The distribution is given by the following expression: 

 

q

ed

N

N kT
E

i

tot

i

i−

=  

 

where Ni/Ntot is the fraction of molecules in the ith quantum state, that has and energy given by Ei 

and a degeneracy given by di.  The term kT is the Boltzmann constant times the temperature on 

an absolute scale.  The denominator, q, is a partition function, which is part of a normalization 

factor.  The partition function is given by 

 


−

=
i

kT
E

i

i

edq  

 

In the case of rotational energy levels for closed-shell molecules, the subscript I can be replaced 

by the rotational quantum number J. 

 


−

=
J

kT
E

Jrot

J

edq  

 

In this expression, the rotational energy level degeneracies are always given by (2J+1) and the 

rotational energy levels (if treated as rigid rotor levels) are given by hcBJ(J+1).  Thus the 

expression for the rotational partition function, qrot, is given by 

 


+

−
+=

J

kT
JhcBJ

rot eJq
)1(

)12(  
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It is handy to note that hc/kT has a value of approximately 206 cm-1 at room temperature.  When 

the energy Ei exceeds approximately 10∙kT, the exponential term becomes negligibly small. 

 Focusing on the numerator of the Maxwell-Boltzmann expression, it is clear that the 

effect of increasing J is mixed in the expression.  As J increases, the degeneracy increases 

(having the effect of increased fractional population in the level) but also the exponential term 

gets smaller due to the higher energy (having the effect of a decreased fractional population in 

the energy level.)  A plot of factional population as a function of J (for HCl at 298 K) is shown 

below. 

 

 
 

Note that at low values of J, the fractional population increases with increasing J, to a point.  

Eventually, the exponential term takes over and the population is extinguished.  The J value 

(Jmax) at which this changeover occurs is a function of the rotational constant B and the 

temperature, and can be determined by solving the following expression for J. 

 

0)12(
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JhcBJ
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d
 

 

The result is 
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2

1

2
max −=

Bhc

kT
J  

 

The intensity pattern is plainly visible in the rotation-vibration spectrum of HCl.  A simulated 

spectrum of the 1-0 band of H35Cl is shown below, clearly showing the P- and R-branch 

structure, and the large gap between where the band origin can be found. 

 
 

 

Line Strength Considerations 
 

The second major consideration in spectral line intensity is the line strength.  This is 

determined by the squared magnitude of the transition moment integral. 

( ) ( )
2

*
"'.   dInt


 

The rotational contribution, often called the rotational line strength, to this expression is a Hönl-

London factor.  For closed shell diatomic molecules, the Hönl-London factors are given by 

 

SJ = J+1 (for R-branch lines) 

SJ = J  (for P-branch lines) 

 

A good way to think of these expressions is to view them as branching ratios.  They indicate 

the relative fraction of molecules in a given level that will undergo an R-branch transition 
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compared to what fraction will undergo a P-branch transition.  The molecules the lower state 

must “decide” to undergo either an R-branch transition or a P-branch transition.  The relative 

fraction of each type of “decision” is the branching ratio.  

 
Notice that the sum of these two expressions gives the total degeneracy of the rotational level.  

Given this relationship, it should be clear that the fractions of molecules undergoing each type of 

transition are given by 

 

12

1

+

+
=

J

J
FR

  and  
12 +

=
J

J
FP

 

 

For open shell molecules, the expressions can be quite a bit more complex, but that is a topic for 

a more detailed course on molecular spectroscopy.  However, some of the details of rotational 

structure of open shell molecules will be discussed in Chapter 8, as the electronic portion of the 

molecular wavefunction can affect the rotational structure profoundly. 
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Problems 
 

1. Consider the data given in the table for lines found in the 

pure rotational spectrum of 12C16O.  Determine an 

approximate value for B and assign the spectrum (the 

lower → upper state rotational quantum numbers for each 

line.)  Make a graph of 2)1(.
)1(

~
+

+
Jvs

J

J
 and determine 

the best fit line.  Use these results to determine B and D for the molecule. Compare your 

results to those found in the NIST Webbook of Chemistry for the ground electronic state 

of CO. 

 

2. Consider the following data for the rotation-vibration spectrum of H35Cl. 

a. Using the differences in frequency, assign the location of the band origin and 

assign the P- and R-branches accordingly.   

b. Using combination differences, fir the data to find B’, D’, B” and D”.   

c. Use your results to find Be, e and De. 

d. Based on your value of Be, find a value for re for the molecule. 

e. Compare your results to those found in the NIST Webbook of Chemistry. 

 

line Freq. (cm-1) ~  

1 3085.62  

2 3072.76  

3 3059.07  

4 3044.88  

5 3029.96  

6 3014.29  

7 2997.78  

8 2980.90  

9 2963.24  

10 2944.89  

11 2925.78  

12 2906.25  

13 2865.09  

14 2843.65  

line ~ (cm-1) 

1 3.845 033 19 

2 7.689 919 07 

3 11.534 509 6 

4 15.378 662 

5 19.222 223 

6 23.065 043 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: The Rigid Rotor © 2022 Patrick E. Fleming 
– Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

169 

 

15 2821.49  

16 2798.78  

17 2775.79  

18 2752.03  

19 2727.75  

20 2703.06  

21 2677.73  

22 2651.97  

23 2625.74  

24 2599.00  

 

3. A recursion formula for the Legendre Polynomials is given by 

 
(𝑙 + 1)𝑃𝑙+1(𝑥) =  (2𝑙 + 1)𝑥𝑃𝑙(𝑥) − 𝑙 𝑃𝑙−1(𝑥) 

 

Based on 𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥 find expressions for 𝑃2(𝑥) and 𝑃3(𝑥).  

 

4. The function describing the l = 1, ml = 0 spherical harmonic is 𝑌1
0(𝜃, 𝜙) = √

3

4𝜋
 𝑐𝑜𝑠(𝜃)  

a. Show that this function is normalized. To do this, you must use the limits on  

and  of 0 ≤ 𝜃 ≤ 𝜋, and 0 ≤ 𝜙 ≤ 2𝜋. Also, for the angular part of the Laplacian, 

𝑑𝜏 = sin(𝜃)  𝑑𝜃 𝑑𝜙. 

b. Using plane polar graph paper (or a suitable graphing program) plot the square of 

the function from problem 2 in the yz plane (which gives a cross-section of the 

probability function for the particular spherical harmonic.) Does the shape look 

familiar? 

 

5. Based on the given bond-length data, calculate values 

for the rotational constants for the following 

molecules: 

 

6. The spacing between lines in the pure rotational 

spectrum of BN is 3.31 cm-1. From this, find B and calculate the bond length (rBN) in the 

BN molecule. 

 

7. From your result in problem 6, calculate the frequencies of the first 4 lines in the pure 

rotational spectrum of BN. 

 

Molecule Bond Length (Å) 

H35Cl 1.2746 

H79Br 1.4144 

H127I 1.6092 
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