Chapter 9: Molecules

Quantum mechanics can be used to predict a large number of properties, especially those
related to electronic spectroscopy, for diatomic molecules. A number of the concepts discussed
in this chapter can be expanded to explain a great deal of the behavior of polyatomic molecules
as well.

Potential Energy and the Hamiltonian

The first task of applying quantum mechanics to a problem is writing the Hamiltonian. This
requires deriving an expression for potential energy. Consider as an example, the simplest
diatomic molecule, Ho".

In the above diagram, the blue dots indicate protons and the red dot, an electron. There will be
attractive forces between the electron and protons 1 and 2 (separated by r1 and r2 respectively)
and a repulsive force between the two protons, separate by a distance ri2. In atomic units, the
Hamiltonian can be written

>

n ~ oA 11 1
H=T+T,+T,————+—

o

where T, T2 and T. indicate the kinetic energies of protons 1 and 2 and the electron,
respectively. As was the case in the helium atom, the H>" molecule involves a three body
problem which cannot be solved analytically. As such, an approximation must be made in order
to proceed.

The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation (Born & Oppenheimer, 1927) is made in order
to simplify the problem in the case of a molecule. This approximation is based on the relative
masses (and therefore the relative speeds) of the heavy nuclei compared to the light electron. It
says that if the nuclei move (such as due to molecular vibration) that the electron(s) will react to

Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming -
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)



https://creativecommons.org/licenses/by-nc-sa/4.0/

a change in the potential energy field instantaneously. As such, the internuclear distance (r12)
can be fixed, and the wave function for the electron optimized. If the nuclear coordinates are
fixed, the Hamiltonian becomes

p-r-1_ 1,1
nhon o h
and the value of 1/r12 becomes a constant.

There are many cases where the Born-Oppenheimer approximation breaks down, such as
Renner-Teller interactions and Jahn-Teller interactions which involve strong coupling between
vibrational motion of a molecule and the electronic state. For the purposes of this text, we will
stick to examples where the Born-Oppenheimer approximation is reasonable.

The Born-Oppenheimer approximation makes it possible to calculate a number of
properties for molecules. Below is an example of a potential energy surface of O calculated
using molecular modeling software at the HF/6-31G(d) level of theory. Basically, the program
optimizes the wavefunctions describing the molecular orbitals based on a fixed internuclear
separation. After populating the resultant orbitals with electrons, a total molecular energy is
generated. After repeating this process at several different internuclear separation values, the
curve can be constructed.

O, Potential Energy Surface
HF/6-31g(d)
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Such calculations are based entirely on the electronic structure of the molecule. As such, some
insight into the nature of molecular orbitals and their wavefunctions is needed to proceed.
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Molecular Orbital Theory

There are a number of ways to describe the electronic structure in diatomic molecules and
the wavefunctions that are needed for the descriptions. Molecular Orbital theory provides one
such example. There are many ways to describe molecular orbitals. One of the most commonly
used is the method of using linear combinations of atomic orbitals (Icao).

Linear Combinations of Atomic Orbitals (LCAO)

Consider a wavefunctions derived from the Schrodinger equation that can be expressed as
linear combinations of the 1s orbitals centered on each atom. The wavefunction can then be
written

y(ri,r2) =ci(lsy) + ca(1s2)

In this expression, ri and r; are the coordinates (position vectors) for nuclei 1 and 2. 1s; an 1s
refer to the 1s orbitals centered on nuclei 1 and 2 respectively. Due to the symmetry of the
molecule, the magnitudes of c; and c2 must be the same.

cil=c2=c
In order to be normalized, the wave function must satisfy

1= c2.|.(ls1 +1s, \Is, +1s, )dz
= czjlsllsldz' + 202J.1s11s2dr + czjls2 Is,dr
The first and the third integrals in this expression are unity due to the fact that the 1s orbitals are
themselves normalized. This the expression becomes
1=2c> + 2czj.lsllszdr

=2c’ (1 + J‘ls1 lszdr)

The integral in this expression J-ls1 ls,dr does not vanish due to orthogonality as we have seen

in other examples, since the wavefunctions are centered in different locations. The magnitude of
the integral, therefore, depends on the degree to which the two orbitals overlap one another. The
overlap integral is commonly given the symbol S. The magnitude of the normalization constant
for the molecular wavefunction will depend intimately on the magnitude of this overlap.

1=2¢*(1+5)

Solving for c, the following results
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¢ = [2(1+8)]"?

And the wavefunction can be written as

Ls, +1s, )

1
W(l‘pl'l)—w(

The value of the overlap integral S will depend on the size of the orbitals and also the
internuclear separation. The above wavefunction is an example of a bonding orbital as the
value of the overlap S will be positive. Positive overlap is a stabilizing condition and acts to
hold a molecule together. But just as a linear combination can be constructed from the sum of
the 1s orbitals on the two H atoms, one can also be constructed from the difference.

w(r,r)= c(lsl _lsz)

This wavefunction will have negative overlap and thus produce an antibonding orbital which,
if populated, has the effect of destabilizing the molecule.

The Expectation Value for Energy

The energies of these bonding and antibonding orbitals can be calculates from the following
expressions

IW*I:]W dr

_W
I(cl Is, +c,ls, )ILAI(C1 Is, + ¢, lsz)dr
.[(C‘ s, +c,ls, )(c1 s, + ¢, lsz)dr

(E)

2 2
_G H +2¢cc,H,, +c;Hy,
¢l +2¢,c,S+c;

In this expression, Hi; and H»; are the Coulomb integrals defined by
H, =1, Hls,dr

It can be easily shown that Hi1 = H2, by symmetry. The other type of integral (besides S, the
overlap integral which has already been discussed) is Hi», called the exchange integral.

H, =[1s, Hls, de
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The energy of the wavefunction is minimized by use of the variational principle. Specifically,
the coefficients ¢ and c2 must be chosen so as to minimize the energy of the wavefunction. This
is done by differentiating the energy expression and setting it equal to zero (since the derivative
will be zero at the minimum.) For simplicity, the expression is rearranged so that implicit
differentiation is easier to see.

E(cl2 +2clczS+c§): cfH11 +2c¢,c,H,, +c§H22

Differentiation of this expression with respect to ¢ and ¢» yields two expressions which can be
used to find the two unknowns, c¢i and c».

E(2¢, +2¢,5)+ S—E (¢? +2¢,c,S +¢2)=2¢,H,, +2c,H,,

¢

E(2c2 +201S)+ S—E(cl2 +2qczS+c§): 2c,H,), +2¢,H,,

¢,

: OE .. : . .
Since o =0 at the minimum, the second terms on the left sides of the above equations vanish.
¢

(How nice of them!)

E(2¢, +2¢,8)=2¢,H,, +2c,H,,
E(2¢c, +2¢,8)=2¢,H,, +2¢,H,,

These expressions can be rearranged.

Cl(E_H11)+Cz(SE_H12):O
cl(HIZ _SE)+02(E_H22): 0
So long as the Coulomb, Exchange and Overlap integrals can be determined, the coefficients can
be as well. The non-trivial solution for ¢; and ¢, can be found from the determinant of the matrix
shown below being set to zero.
H,-E SE-H, _o
H,-SE E-H,|

It can be shown (although it will not be shown here) that

Hii=E(ls)+J
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where E(1s) is the energy of a 1s orbital in hydrogen and J is an expression that depends on
internuclear distance (r), given by

Similarly, Hjj can be determined from
Hij=E(1s)S + K

where K is given by
K =£—e_r(l+r)
r

Notice that the expressions for both J and K vanish as r approaches . Given these substitutions,
the determinant equation becomes

E,+J+E E +K-SE
E S+K-SE E +J+E|

Or
(E,+J+E) —(E,+K—-SE) =0

Being quadratic in E, this expression yields two solutions for the energy. One will give the
energy of the bonding orbital and the other will be the energy of the antibonding orbital. (Now
how much would you pay?) These energies are given by the expressions

J+K
Ebonding = Els + 1+S
and
J-K
E . =E +—-
antibonding s 1_ S

The following diagrams show the radial wavefunctions (across the z-axis of the molecule) for
both the bonding and antibonding combinations of 1s orbitals. The graph on the left shows the
value of the wavefunction, while the one on the right shows the square of the wavefunction.
Note the node in the middle of the molecule in the antibonding orbital!

The following figures show the axial wavefunction for the
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v =1sa+ 1s
bonding and the
y = Isa—1IsB
antibonding orbitals (on the left) and the corresponding squared axial wavefunctions on the right.
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These orbitals are easy to visualize and understand based on a pictorial approach of linear
combinations of orbitals as well. In the pictorial approach, the emphasis is on the sign of the
function in the overlap region.

Bonding and Antibonding Orbitals Constructed from s Orbitals

The combination of 1s orbitals can be visualized in the following diagram
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In this diagram, depicting the symmetric overlap to two 1s orbitals, it can be seen that the region
of overlap will have a positive value (as it is given by the product of two positive numbers. This
is an example of a s orbital since it is cylindrically symmetric about the internuclear axis.

Just as the symmetric combination can be depicted, the antisymmetric combination is
also easy to generate.

In this depiction, it should be clear that the region of overlap has a negative value. Another way
to think about this is that the wavefunction must change sign as it crosses from left to right. This
implies a node between the nuclei!

As stated before, the positive overlap depicted in the first orbital is a stabilizing
condition, and the negative overlap in the second is destabilizing. This can be depicted in an
orbital diagram.

131 152

O

g

In this diagram, the atomic orbitals on the separated atoms are shown on the far right and left,
and the orbitals in the middle column are the molecular orbitals that arise from the linear
combination of the atomic orbitals. o, indicates the bonding orbital and o, indicates the
antibonding orbital resulting from the symmetric and antisymmetric combinations of the 1s
orbitals. The subscripts g and u state for gerade and ungerade respectively. Gerade is a
German word meaning even, which ungerade means odd. Specifically, these terms (and
subscripts) are used to indicate the symmetry of a function with respect to inversion. The g/u
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symmetry can be determined by drawing an arrow through the middle of a picture of a molecular
orbital. If the arrow ends in a point with the opposite sign, the wavefunction is ungerade.
However, it must be noted that this symmetry applies only to homonuclear diatomic molecules
(and other molecules that possess an inversion center symmetry elements.) More will be
discussed about molecular symmetry in later chapters.

Bonding and Antibonding Orbitals constructed from p Orbitals

Bonding and antibonding ¢ orbitals can be constructed from p-orbitals that are aligned on axis.
In the diagram below, the upper picture indicates an antibonding orbital while the lower image is
a bonding orbital.

In addition to o orbitals, 7 orbitals can also be constructed.

““

Clearly the n-bonding orbital is ungerade, while the m-antibonding orbital is gerade (if an
inversion center exists within the molecule. It is also important to note that n-type overlap is
smaller than c-overlap, due to the need to get two nuclei so close together for strong overlap of
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the p orbitals in a  orientation. As such, the 7 orbitals are less stabilizing or destabilizing
relative to the atomic orbital energies.

d

g

The o boding and antibonding orbitals will be formed by the symmetric and antisymmetric
combinations of the p, orbitals on the separated atoms, whereas the m orbitals will be formed
from the px and py orbitals from the separated atoms.

Electronic Configurations

Electronic configurations can be written for molecules just as they can be for atoms. Instead of
being numbered by the principle quantum number, however, molecular orbitals are numbered
sequentially from the lowest energy orbital of a certain symmetry. Consider the following list of
electronic configurations for homonuclear diatomic molecules formed using the first ten
elements.

Bond Electronic
Order State

H, (15,) 1 13"
He> (16.)% (164")? 0 unbound
Li> KK (26,)* 1 Iy
Be, KK (26,)* (26.,°)? 0 unbound

1

2

3

Molecule Electronic Configuration

B> KK (26.)? (264)* (36,)° Dy
Ca KK (265)* (20u)* (30g)* (1mu)* N
N, KK (26.)> (264)* (36,)° (1mn)* 13"
0, KK (26,)* (264)? (360)* (1my)* (17s)> 2 3%y
Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming -
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F> KK (26.)* (264)* (36¢)* (1mw)* (17 ")* 1 I3,
Ne, KK (26.)? (264°)* (36.)? (1m)* (1me)* (364")? 0 unbound

In this table, the older shell notation is used to indicate a filling of the inner shell electrons,
(1og)? (16,")%. These are given the symbol KK.

Bond Order

The bond order of a molecule is determined by adding the number of electrons in boding
orbitals, subtracting the number of electrons in antibonding orbitals and dividing the result by 2
(since there are two electrons per orbital.)

#bonding—# antibonding
2

Bond Order =

The larger the bond order, the stronger a chemical bond is predicted to be. Also, since strong
bonds are short bonds, the larger the bond order, the shorter a bond is predicted to be.

Ionization of a molecule may have a profound affect on the bond order, and therefore the
bond length. Consider the molecule C; that has an electronic configuration given by

C2: KK (20,)° 20u") (30)* (1mu)’

The addition of an electron to for C;” will require the electron to go into the 1pubonding
subshell. This will have the effect of strengthening the bond (since it increases the bond order.)
Removal of an electron to form C," would weaken the bond since it involves the removal of a
bonding electron.

Paramagnetism

While the bond order of oxygen (O2) is
correctly predicted by a Lewis Structure, the
Lewis structure fails to predict that the
molecule will be paramagnetic.
Paramagnetism is a property of a molecule or |
atom that occurs when the system has
unpaired electrons. These electrons each
have a small magnetic moment which can
align with an external magnetic field,
lowering the energy of the atom or molecule.
As such, the atom or molecule will be
attracted to a magnetic field.

Oxygen, which has an electronic
configuration given by

Photograph showing liquid oxygen being trapped in a
Quantum Chemistry with Applications in Molecu magnetic field due to its paramagnetic nature.
Available under Creative Commons Attribution-Noncommercidi-snadre Auke HCense 4.U (LU B Y -INU-DA 4.U)

227


https://creativecommons.org/licenses/by-nc-sa/4.0/

02 (log)’ (low')* (20p)° 20u")* (3oy)® (1mu)* (1mg)
KK (26¢)* (20u")? (30¢)* (1m)* (17g")°

It is clear that there are two unpaired electrons. This is a property that cannot be predicted based
on the Lewis Structure!

Hund’s coupling cases (a) and (b)

There are clearly sources of angular momentum in a molecule due to orbital and spin
considerations. But unlike atoms, molecules can also have angular momentum contributions
from molecular rotation. There are many ways to describe the coupling of these different types

of angular momentum. This text will focus on two specific cases, Hund’s coupling cases a and
b.

Hund’s case (a)

In Hund’s case (a) coupling, the orbital and spin angular momenta are strongly coupled to the
internuclear axis of the molecule. This defines the quantum number A and X, which are the
internuclear axis projections of L and S. The sum of A and X give the total electronic angular
momentum along the internuclear axis, Q2.

A+2=0Q
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Q) is then coupled to the end-over-end rotational angular momentum of the molecule (R) to give
J, the total angular momentum.

J=Q+R
N
r|Y
L
S
o2
L |
Q

For a molecule that is well described by Hund’s case (a) coupling, that is in a 'TT electronic state,
the lowest value of J possible is J = 1. The one unit of angular momentum comes from the
orbital part of the wave function, so J = 1 actually describes a non-rotating molecule (R = 0)!

Hund’s case (a) does a good job of describing molecules which exhibit moderate spin-
orbit coupling. If the coupling is extremely strong, another case (case (c), for example) is needed
to describe the molecule’s properties.

Hund’s case (b)

Hund’s case (b) is slightly different from case (a) in that the spin angular momentum is
uncoupled from the internuclear axis. As such, in Hund’s case (b) coupling, the quantum
numbers X and Q are undefined. In this case, the end-over-end rotation (R) of the molecule
couples with A to produce N, which describes the sum of rotation plus orbital angular
momentum.

N=A+R
N can then couple with S to give J, the total angular momentum.

J=N+S
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Singlet states, with S = 0, are always well described by Hund’s case (b) coupling. Hund’s case
(b) is a good description for molecules where spin-orbit coupling is weak (or immeasurably
small.)

In the section describing the rotation of molecules as rigid rotators, the quantum number J
was used to describe the total angular momentum due to rotation. This is consistent with both
Hund’s cases (a) and (b) for molecules in ' states, where A =0 and S = 0 (implying where
appropriate that X = 0 as well.)

Diatomic Term Symbols

A term symbol for a diatomic molecule contains a great deal of information about
symmetry properties of the wavefunction which describes the electronic state. The symmetry
properties are closely related to the values of the quantum numbers which specify the
wavefunction. The pattern used to assign a symbol to a value for a quantum number is very
similar to the pattern used for atomic systems. The major difference is that the quantum numbers
must reflect the cylindrical symmetry of diatomic molecules rather than the spherical symmetry
of atoms.

Quantum One Electron Many Electrons
Number Atom (/) Molecule (A) Atom (L) Molecule (A)
0 S o S )
1 p T P I1
2 d 0 D A
3 f [0} F O

Just as there is a (2/+1) degeneracy in the spherical wavefunctions, there is also an
important degeneracy pattern in the wavefunctions of diatomic molecules. X and G states are
singly degenerate whereas all other are doubly degenerate. Why this is should become apparent
as we develop the united atom method for decomposing spherical symmetry to cylindrical
symmetry.

Wavefunction
Aor A degeneracy
Symmetry
Quantum Chemistry with Applications in Molecular Spectroscopy: Molecules © 2022 Patrick E. Fleming -
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0 o > 1
1 T I1 2
2 o A 2
3 (0] ) 2

There are three methods commonly used to derive terms symbols for diatomic molecules.
All of the methods are based on determining the quantum number A and the total spin quantum
number. In the case of homonuclear diatomic molecules, the inversion symmetry is also
important.

> states have another important symmetry designation. X states can have either + or -
symmetry depending on whether or not the state is symmetric with respect to reflection through a
plane containing the internuclear axis. Symmetric states are designated as X state and
antisymmetric ones are £". I, A and all other states with L # 0 are doubly degenerate as they
have both + and - components.

There is always an odd number of S states generated for the United Atom method or the
Separated Atom method. They will come in pairs of £, ¥ and the odd remaining state will have
+/- symmetry as determined by the Wigner-Witmer rule. For this, one must consider the
associated atomic state (using either the United Atom or the Separated Atom method). The +/-
symmetry is determined by whether the indicated sum is even or odd according to the following
table.

Method Sum Value Parity
. L+ ] even +
United Atom Z ; odd -
+
Separated Atom | La+ Zl ,TLe+ Zl 2 eo\g? -
United Atom Method

Think of the molecule as an atom with the same number of electrons. The atom will have
spherical symmetry. The task is to reduce the spherical symmetry of the atomic wavefunction to
the cylindrical symmetry of the diatomic molecule. In this case, the z-axis of the unified atom
becomes the internuclear axis of the molecule. Thus, the quantum numbers will transform as

ML 2> A
S->S

Example: What molecular terms are predicted for the OH radical?

Solution: The unified atom with the same number of electrons as OH is fluorine. The ground
state designation for atomic fluorine is 2P. For this state, L = 1 and so ML can be -1, 0 or +1. The
only values of [ML| are 0 and 1. Therefore, the predicted terms will be  and IT. The multiplicity
will be the same as the unified atom (S = 1/2). The X state will be symmetric with respect to
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reflection though a plane containing the z-axis since
L+ >
is even for fluorine. So the expected terms are
23" and ’T1

As it turns out, the ground state of OH is “I1. The only way to confirm the ground state, however,
is to use the molecular orbital method.

Separated Atom Method

A second method for determining molecular term symmetries is the separated atom
method. This method is similar to the atomic term symbol method of writing out an exhaustive
list of microstates and then accounting for each one. The quantum numbers which are important
are determined from the sums of the z-component quantum numbers of the atomic
wavefunctions. Thus, the values of A which are possible will be given by all possible
combinations of Mr. Values of the same magnitude are then paired to make the two degenerate
components for any values of |A| > 0.

Example: What molecular terms arise for HLi, formed from a ground state hydrogen atom and a
ground state lithium atoms?

Solution: The ground state of lithium is *S. For this set of atoms, we can construct the following
table to combine values of ML to form values of A and values of S as well.

. H(S) Li(®S) AandS
ML 0 0 0
S v v 1,0

It is clear that the only value of A that can be generated from these separated atom states is A =
0, or a X state. The sum of Lao + L + Z/a + Z/g is given by 0 + 0 + 0 + 0 = 0, which is even.
Hence, the X state has =" symmetry. So the resulting states are 'S," and *%,". The ground state
of Liz is 'S, but this can only be confirmed by the use of the molecular orbital method.

Example: What molecular terms are predicted for the OH radical?

Solution: The ground state atomic term for O is *P and that for H is *S. The following table
shows the possible combinations of Mt to form A and the combinations of S which form the
familiar Clebcsh series of resultant S values.
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H(S) OCP) AandS
ML 0 +1,0,-1 | +1,0,-1
S A 1 3/2,1/2

The combination of a P term and an S term gives one I'1 (A =+1) and one X (A = 0) term. The
sum La + L + Z/a + Z/g is given by 1 + 0+ 4 + 0 and is clearly odd. Therefore, the X state will
be of X" symmetry. The spin quantum numbers which are possible are 3/2 and 1/2. Therefore, the
possible term symbols are *IT, 4%, 2IT and 2%". (The ground state of the OH radical happens to be
of 2I1 symmetry, but again, this can only be confirmed using a molecular orbital approach.)
Notice that there is no g/u symmetry indicated in this case because the molecule does not include
an inversion center being a heteronuclear diatomic molecule!

Example: What molecular terms arise for CO formed from a ground state carbon atom and a
ground state oxygen atom?

Solution: The ground state of both C and O is *P. the following table summarizes the
decomposition of the two atomic states from spherical to cylindrical symmetry.

. CCP_OCP)  AandS
My | +1,0,-1 | +1,0,-1 | #2,+1,+1,0,0,0
S 1 1 2,1,0

The resultant state are A, 2 IT and 3 £. Of the three X states, two will form a pair of £7/Z". The
last S state must have its +/- symmetry determined by the Wigner-Witmer rule.

Le+Lo+Zlc+2lo=1+1+2+4=8(even)

So the final X state is Z+. The spin states generated are quintet, triplet and singlet. So the set of
molecular states generated are

SA, SH, SH, 52 +’ 52 -, 52+
3A, 3H, 3H, 32 +’ 32 " 32+
IA, IH, IH, 12 +’ 12-’ 12+

The ground state of CO is in fact 'Z, but as always, this can only be reliably predicted using the
molecular orbital method.

The number of states generated from separated atoms increases rapidly as the angular
momentum in the separated atoms increases.
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Molecular Orbital Method

The molecular orbital method requires the construction of a molecular orbital diagram. As was
the case in the atomic term symbol problem, the molecular terms can be constructed considering
only partially filled subshells.

The quantum numbers will then be given by the vectoral sums of the one-electron
quantum numbers. Consider the orbital diagram for the oxygen molecule.

The only important electrons in this case are the two 7, electrons. (Ignore all of the ones
in completely filled subshells - just as was done in the case of atoms as these always contribute A
=0 and S = 0.) The orbital angular momentum XA of one of the n," electrons will cancel that of
the other as one will have a value of A = -1 and the other has A = +1. (This is similar to the
atomic case where one electron was in an orbital with m; = -1 and the other in an orbital with m;
=+1. The sum of the two is zero.) Thus, A will be 0. Hence the predicted term will be a ¥ state.

Since one of the m," orbitals is symmetric with respect to reflection through a plane
containing the nuclei and the other is antisymmetric, the predicted term will be anisymmetric
with respect to this symmetry operation.

(sym) x (antisym) = antisym

Thus, the state will be of £~ symmetry. In a similar manner, the gerade/ungerade symmetry can
be determined by the product of the one-electron orbital symmetries.

()x(g)=¢g
Finally, the spin multiplicity can be determined in the usual way.
S=s1+s,s1+ts2-1,...,][s1 - 52
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S=1landO

The predicted terms for this electronic configuration are 3L, and 'S,". The ground state of
0 is 3%, And since this result was generated using the molecular orbital method, the result is
reliable that this is indeed the ground state of the O, molecule!

Herzberg Diagrams

One of the important reasons for describing the electronic structures and angular
momentum coupling in diatomic molecules is to apply these descriptions to the prediction of the
rotational branch structure in molecular spectra. As always, the first concern when predicting
patterns in molecular spectra is the determination of selection rules. The selection rules for
which the transition moment does not vanish are summarized below.

AS=0
AN =0, =1
+> o, -+

Based on these selection rules, Herzberg diagrams can be used to predict the rotational branch
structure and “first lines” in each branch based on the symmetries of upper and lower states in a
given transition.

In order to discuss this very useful tool, we shall begin by discussing the description of a
single state, starting with simple symmetry (). In order to proceed, it is important to note the
+/- symmetry of rotational wavefunctions. Basically, the rotational wavefunction is symmetric
with respect to reflection through a plane containing the internuclear axis if R is even, and
antisymmetric if R is odd. Thus the symmetry of the total wavefunction, given by

Wiot = WelecYvibYrot
is given by the product of the symmetries of Weiec, Wyib and Wror. In the case of a '=* state, Welec is

+. Wvib 1s always + for vibration of a diatomic molecule. The rotational contribution (yrot) will

alternate for increasing R or J. (In the case of a X" state, R and J have the same value, since A =
0and S=0.)

1 2 3

O—O—O—0O

The above Herzberg diagram summarizes the +/- symmetry for the first few rotational levels.

J
lz+
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1 2 3

O—O—O—C

J
lz+

- (O—C

Based on this diagram, and the selection rule that + <> - and - <> +, the branch structure
for a 'S* «>!" transition can be predicted. Clearly, R- and P-branches are predicted in the
rotational structure. This is the proper Herzberg diagram for the description of the 1-0 rotation-
vibration spectrum of HCI (or other closed shell heteronuclear diatomic molecules.) Notice that
AJ = 0 (Q-branch) transitions are impossible since the parity (+/- symmetry) does not change in
such transitions, and hence they are forbidden.

The Herzberg diagram description of a !Z" state is not too different than that for a !=*
state. The only difference is that the +/- symmetry changes such that levels with odd J are now +
and those with even J are now -.

O—O—O—0C

The description of a 'TT state can be based on modifications to the descriptions of '=* and
'3 states. Two important differences must be taken into account. First, since J is given by the
sum of A and R (or (2 and R in Hund’s case (a), but this will only be important if S # 0, which is
not the case for a singlet state.) Second, since I1 states (like A, @, etc.) have two components,
both must be included in the diagram.

J
Iy
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The description of a 'T1 — ' transition can now be constructed. Note that P- Q- and R-
branches are predicted. Also notice the “first line” in each branch. If the IT state is the upper
state, the first lines in each branch are P(2), Q(1) and R(0). (There can be no P(1) line as the J =
0 level is missing in the upper state.) This is a pattern is a one way to recognize a 'TI — '%*

transition.
A reversal of state, such that the !X* state is the upper state, causes the pattern to change.

In the case of a '>" - 'TI transition, he first lines in each branch are predicted to be P(1), Q(1) and
R(1).

[ -
1
(=]
-
)
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A 'TT - 'TT transition becomes a little more complex as well. In this case, it can be seen that there
are two Q-branches predicted! These will be resolved only if the two A components of at least
one of the IT state are significantly different in energy. The first lines are predicted to be P(2),
Qi(1), Q2(1) and R(1).

While the description here has been limited to singlet states of £ and IT symmetry, these
tools can be extended to describe and predict a great deal of rotational fine structure patterns in
spectroscopic transitions (Herzberg, 1950). The patterns can get extremely complex for systems
with high spin or orbital angular momenta. The picture can become even more complex when
nuclear spin exists in the molecule which can couple to orbital, spin and/or rotational angular
momenta. Entire books are dedicated to sorting out these patterns and interpreting the spectra of
molecules which require these considerations (Brink, 1994) (Bunker, 2009).

Vibronic Transitions

Just as rotational motion is important in understanding vibrational spectra, vibrational (as
well as rotational) motion(s) are important in understanding electronic transition is molecules.
Electronic transitions in which vibrational structure is resolved are sometimes referred to a
vibronic transition. When rotation is thrown in to the mix, the term “rovibronic transitions” is
sometimes used.

Vibronic transitions can be discussed in terms of the transition moment. Keeping in mind
that the wavefunction for a vibronic state can be expressed as a product

Wit = WelecYvib

and that the transition moment is given by
J‘ lIjtol‘ lZz \Ijt()ldz-

Substitution yields
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I (l//elec‘//vib )* [l (l//elec l//vib )dT

Since the dipole moment operator is a derivative operator, the chair rule must be employed,
which yields

I V/Zlec‘//elecd Tj l//:ibﬁ W,dT + I W:lecﬁ Ve T_[ 14 :ibl// wdT

Since the electronic wavefunction must be orthogonal, the first term will vanish for transitions
between two different electronic states. The second term however, does not vanish. In face, the

magnitude of the IW:ivafbd 7 will be determined by the overlap of the two vibrational levels.

(Note that since these represent vibrational wavefunctions in different electronic state, there is no
reason for the wavefunctions to be orthogonal.)

Franck-Condon Factors

The intensity of a band in a vibronic transition will be governed by the magnitude of the Frank-
Condon Factor for the band. The Franck-Condon factor (FCF) is defined by

FCF = UV/;ibl//:ide]z

which is governed purely by the degree of overlap between the upper state vibrational
wavefunction and that in the lower state. The overlap will be large for Av = 0 if the potential
energy functions of the upper and lower states are similar (similar ®e, ®eXe, T, €tc.) and strong
sequences will be observed in the spectrum. If, however, the equilibrium bond length changes
significantly, the maximum Franck-Condon overlap will occur for combinations of v’ and v for
which Av # 0. In these cases, strong progressions will be observed.

The Franck-Condon principle is closely associated with the Born-Oppenheimer
approximation. In cases where the Born-Oppenheimer breaks down, the Franck-Condon
principle is compromised as well.

Term Symbols for Polyatomic Molecules

Term symbols are used to designate electronic states of polyatomic molecules, much the
same as they are used to designate electronic states for both atomic systems and diatomic
molecules. These can be derived in much the same manner as we have developed for diatomic
molecules, by taking combinations of atomic orbitals, whose symmetries have been decomposed
from the spherical symmetry of the atoms to the lowered symmetry of the molecule.

An example would be H3", which is the most common triatomic ion in the universe. (It is
also an excellent example of a three-center two-electron bond in so far as it is the simplest
example of a molecule possessing such a bond!) The combination of three 1s orbitals on the
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three atoms will yield three molecular orbitals. The decomposition of symmetry is described in
the following section.

Group Theoretical Approach to Molecular Orbitals

One of the more powerfully predictive things we can do with Group Theory is predict the
symmetries of molecular orbitals. Molecular orbital symmetries can have huge ramification on
chemical bonding and chemical reactions.

The first thing we would like to be able to do is to predict the symmetries of the
molecular orbitals that arise from the linear combinations of atomic orbitals. This is not too
difficult. In fact, the process has many aspects in common with determining molecular vibration
symmetries. The process can be summarized as follows:

1. Separate the molecule into groups of equivalent atoms.
For each set of equivalent atoms, determine the reducible representation that describe the
atomic orbitals to be used in the construction of molecular orbitals. This is determined by
assuming that the point group is centered on an atom containing the orbitals. Call this
[ao.

3. Determine ['unmoved for the set of equivalent atoms.

Multiply Iao ® [unmoved to determine [educible for each set of equivalent atoms.

5. Add all of the I'reducible that you have determined for each individual set of equivalent
atoms. Call the result I'vo.

6. I'mo can then be resolved into components. These components give the symmetries of
the molecular orbitals that result from the linear combinations of the atomic orbitals you
have selected.

R

Example: The Molecular Orbitals for a Water Molecule

Solution: For this example, we shall consider the 1s orbitals on the H atoms, and the 2s and 2p
orbitals on O. As it turns out, s orbitals are always totally symmetric in any point group, since
they possess spherical symmetry. The p orbitals will transform as the x, y and z axes. So the
following set of tables is used to generate I'mo for water.

First, determine 'y describing the H atoms.

Cay E C2 Oxz Oy
e || 1 1 1
I"unm 2 0 0 2

I'u 2 0 0 2

Next, determine "o describing the four orbitals on the O atom.

Caoy | E C Oxz Oyz
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Logs) 1 1 1 1
L'oep) 3 -1 1 1
[red 4 0 2 2
Iunm 1 1 1 1
I'o 4 0 2 2
Next, determine I'mo as the sum of 'y +I'o
Cay E C Oxz Oyz
Iy 2 0 0 2
I'o 4 0 2 2
I'mo 6 0 2 4
Now, decompose ['mo under Cy symmetry!
Cay E C2 Oxz Oyz
I'vo 6 0 2 4
-3 Al 3 3 3 3
3 -3 -1 1
-Bi 1 -1 1 -1
2 -2 -2 2
-2 By 2 -2 -2 2
0 0 0 0

So

I'Mo=3A1+B:1+2B;

The molecular orbitals of water are shown below.
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8 2b, 53 eV
§u 3a, 4.1
\
O 1b, % -12.3
/
E}c*"', 2a] %— 14.5
s
8 b, - 176
la, - 36.8

(The above orbitals are generated based on a PM3 (semiempirical) orbital calculation of water.
The numbering does not match the actual orbitals, but the symmetries are correct.)

The 1a; orbital was not generated in this example because it is essentially the 1s orbital on

oxygen, which was not included in the basis set of functions we originally used. Also missing
from our set are the 2b, and 3b: orbitals, which require the addition of 3px and 3dx; orbitals on
oxygen, which were not included. These orbitals are “virtual orbitals” as they are unoccupied.

The electronic configuration of H>O is given by
(la1)? (2a1)* (1b2)* (3a1)* (1b1)?

The overall symmetry of the electronic state is given by the product of the se symmetries,
counting each one twice since each orbital contains two electrons. In fact, all closed shell
molecules (all subshells filled) will have an electronic symmetry that is totally symmetric. In
this case, the electronic state is 'Aj.

If the lowest unoccupied molecular orbital is of B, symmetry, then the first excited state
of the molecule will be
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... (1b)! (4a))!

The total electronic symmetry is given by B1 ® A; = B1. The electronic configuration would
give rise to both singlet and triplet states.

To test whether or not the transition to this state is allowed, the transition moment
integral must not vanish.

B,

[y ity dr =B, | B, |- 4dz
Al

This integral clearly will not vanish by symmetry for the component along the x-axis. Hence, the
transition to this excited state of water will be a perpendicular transition.

Example: Formaldehyde

To generate the molecular orbitals in formaldehyde, consider the 1s orbitals on H, the 2s and 2p
orbitals on C and O.

First, determine 'y describing the H atoms.

Cov E C Oxz Oyz
Tuas) 1 1 1 1
Funm 2 O O 2

I'n 2 0 0 2

Next, determine ['c and I'o describing the four orbitals on the C atom and the O atom.

Cay E C2 Oxz Oyz
Tces) 1 1 1 1
I'cep) 3 -1 1 1

Ired 4 0 2 2
INunm 1 1 1 1

I'c 4 0 2 2

Cov E C Oxz Oyz
Togs) 1 1 1 1
Loep) 3 -1 1 1

Ired 4 0 2 2
I wwwsm 1 1 1 1
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o | 4 0 2 2
The total reducible representation to be reduced is given by I'n + I'c + I'o.

Coy E C Oxz Oyz
I'n 2 0 0 2
I'c 4 0 2 2
I'o 4 0 2 2
I'vo 10 0 4 6

Decomposition of this reducible representation shows

I'vo =5A1 +2B; +3B>

The electronic configuration for formaldehyde is given by
(la1)” (2a1)* (3a1)* (4a1)* (1b2)* (5a1)* (1b1)* (2b2)?

The (1a1) and (2a;) orbitals did not come from the above analysis as they are essentially the as
orbitals on O and C that were not included in the basis set. The lowest energy unoccupied orbital
is (2b1), so the first excited electronic state will have an electronic configuration given by

... (5a1)? (1b1)* (2b2)! (2b1)!

This yield both triplet and singlet spin functions and an orbital function with symmetry given by
b> ® by =a>. And as it turns out, the first electronic transition in formaldehyde is orbitally
forbidden since no choice of a component of the dipole moment operator can be used to create a
totally symmetric integrand for the electric dipole transition moment integral.

Bl
[4,-] B, |- 4dz
Al

In order to see this transition in formaldehyde, there must be some involvement from vibrational
motion that changes the symmetry of the overall wavefunction. Recall that

Wit = WelecYvib

if the Born-Oppenheimer approximation holds. The symmetries for the vibrational
wavefunctions (which can be derived using the method previously discussed) are given by

INin=3A1+tB1+2B>
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So excitation of a By or B, vibrational mode (yielding an overall symmetry for the total
wavefunction of either B> or B respectively) will cause the transition to “turn on”. This type of
vibronically allowed transition is not uncommon (similar behavior is observed in benzene) and
is characterized by a missing 0-0 band in the electronic spectrum of the molecule.
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Learning Objectives

After mastering the material covered in this chapter, one will be able to:

1. Describe the Born-Oppenheimer Approximation and how it is used to construct potential
energy surfaces describing the vibration of a diatomic molecule.

2. Construct a molecular orbital diagram for a diatomic molecule depicting both bonding
and antibonding orbitals of ¢ and © symmetries including inversion symmetry (g/u) as
appropriate for homonuclear diatomic molecules. Utilize the diagram to

a. Predict the ground state electronic configuration of a diatomic molecule,

including
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1. Magnetic properties
ii. Bond order
Describe the differences between Hund’s Angular Momentum Cases (a) and (b) and how
these cases manifest in the resulting energy levels in real molecules.
Determine molecular term symbols for diatomic molecules using the
a. United Atom Method
b. Separated Atom Method
c. Molecular Orbital Method
Construct Herzberg Diagrams and use them to
a. Determine the band structure of a spectroscopic transition, including the “first
line” in each branch.
Derive the formulation for the Franck-Condon factor and explain how it determines
relative intensity of vibrational bands in an electron transition.
Utilize the tools of Group Theory to predict the symmetries of the molecular orbitals that
arise from linear combinations of atomic orbitals for a polyatomic molecule.

Problems
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