Chapter 6: The Hydrogen Atom

The hydrogen atom problem was one that was very perplexing to the pioneers of quantum
theory. While its quantized nature was evident from the known atomic emission spectra, there
were no models that could adequately describe the patterns seen in the spectra.

Older Models of the Hydrogen Atom

Two of the most important (historically) models of the hydrogen atom and it’s energy
levels/spectra were proved by Johannes Balmer, a high school teacher, and Niels Bohr, a Danish
physicist. Balmer’s model was a completely empirical fit to existing data for the emission
spectrum of hydrogen, whereas Bohr provided an actual theoretical underpinning to the form of
the model which Balmer derived. In this section, we will discuss the development and
ramifications of these two models.

Balmer’s Formula

Balmer (Balmer, 1885) was the first to provide an empirical formula that gave a very
good fit to the data, but offered no theoretical reasoning as to why the formula had the simple
form it did. Balmer felt, however, that despite the lack of a theoretical foundation, such a simple
pattern could not be the result of an “accident”.
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Balmer suggested the formula
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to calculate the wavelengths (L) of the lines in the visible emission spectrum of hydrogen. In this
formula, G = 3647.053 A, which is the series limit (depicted as H. in the figure above.) Balmer
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considered this to be a “fundamental constant” for hydrogen and fully expected other elements to
have similar fundamental constants.

In modern terms, Balmer’s formula has been extended to describe all of the emission
lines in the spectrum of atomic hydrogen.
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where nj and ny are integers with n; < ny. Ry is the Rydberg constant for hydrogen and has the
value

Ry = 109677 cm’!

The job of subsequent investigators was to provide a theory that explained the form of the
Rydberg Equation shown above and to correctly predict the value of the Rydberg Constant.

This model describes all known series of emission lines in the spectrum of atomic
hydrogen. Each series is characterized by the lower state quantum number. The following table
summarizes the names of these series.

ni Name Region

Lyman | Vacuum Ultraviolet
Balmer | Visible/Ultraviolet
Paschen | Near Infrared
Brachen | Infrared

Pfund Far Infrared

N[ |WIN =

The Bohr Model

Niels Bohr (Bohr, 1913) was the first person to offer a successful quantum theory of the
hydrogen atom in his 1913 paper. He was later awarded the Nobel Prize in Physics in 1922 for
his contributions to the understanding of atomic structures (as well as many other significant
contributions.) And while the Bohr model has significant shortcomings in terms of providing the
best description of a hydrogen atom, it still provides the basis (a “solar system model”) for how
many people view atoms today.

Bohr’s model was mostly an extension of the Rutherford model of an atom, in which
electrons exist in a cloud surrounding a dense, positively charged nucleus. The Bohr model
suggested a possible structure to this cloud in an attempt to give an explanation of the empirical
formula presented by Balmer. The strength of the Bohr model is that it does provide an accurate
prediction not only of the form of Balmer’s formula, but also of the magnitude of the Rydberg
constant that appears in the formula.

Bohr’s approach was to balance the electrostatic attractive force between an electron and
a positively charged nucleus, with the centrifugal force the electron feels as it orbits the nucleus
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in a circular orbit. He derived these orbits by making the assumption that the angular momentum
of an orbiting electron is an integral multiple of 7 .

While successful in predicting the form of the Rydberg Equation and the magnitude of
Ru, the Bohr model presented some difficulty. First, it ignored the reality that a charged particle
orbiting another (oppositely) charged nucleus would see its orbit decay over time, eventually
colliding with the nucleus. This clearly does not happen with hydrogen! Also, the Bohr model
was not extendable to larger atoms. Quantum mechanics would have to address these problems,
while also providing the kind of explanations for the Rydberg Equation provided by Bohr.

The Quantum Mechanical H-atom

As is so often the case for quantum mechanical systems, the story of the hydrogen atom
begins with writing down the Hamiltonian describing the system.

The Potential Energy and the Hamiltonian

The time-independent Schrodinger equation has the following form.

Hy(r,6,¢) = Ep(r,6,9)
hZ
I_sz + U(r)l l/)(T', 6! d)) = Elp(r: 0' d))

where p is the reduced mass for the electron/nucleus system. The Laplacian operator has the

form
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The potential energy is given by the electrostatic attraction of the electron to the nucleus.
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where Z is the charge on the nucleus in electron charges (also given by the atomic number), ¢ is
the charge on an electron and & is the vacuum permittivity.

H-atom Potential Function

Energy

The 1/r dependence means that the electrostatic attraction diminishes as the distance between the
electron and the nucleus is increased. The potential energy approaches zero as r goes to o, at
which point the atom ionizes.

Putting this all together allows the Hamiltonian to be expressed as

2 2
H=—h2£r2£—ze 1 P
2ur® or or A4neg,r 2,ur

The wavefunctions can be expressed as a product of a radial part and an angular part since the
Hamilton is separable into these two parts.

v (r,0,8)= R(r)Y," (0,¢)

The angular part of the function, ¥,™ (9, ¢) are the spherical harmonics and are eigenfunctions of

the [? operator. Substitution into the Schrodinger equation yields

noo ,0 ze R(r) Py
Y, (M)( o o amer JR() 27 L1 (0.6)= ER()Y" (0.9)
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Since the spherical harmonics are eigenfunctions of the L* operator, the following substitution
can be made.

Ly (0,4)=n11+ 1Y, (0,9)
After making this substitution and dividing both sides by Y,” (9, ¢), we get

R +1)
2ur’

( T i R() = ER()

- s R(r)+
2ur- or or A4neg,r

However, since / shows up in the equation in which we are solving for the radial wavefunctions
R(r), it is not to be unexpected that the solution to the radial part of the equation will place new
constraints on the quantum number /. In fact, the radial wavefunctions themselves depend on /
and a principle quantum number 7.

The Energy Levels

Applying the boundary condition that the radial wavefunction R(r) must vanish as r = o,
the only wavefunctions that behave properly have the following eigenvalues

2 4
E=-—t2e 1123
2h°(4rs,)” n

Notice also that this expression vanishes as n approaches oo, which is the ionization limit of the
atom. Also, since the energy expression depends only on # (and not on / and m) it is expected
that there will be a great deal of degeneracy in the wavefunctions.

Taking differences between two energies levels (to derive an expression for the energy
differences that can be observed in the spectrum of hydrogen), it is seen that

2 4
E,—E, = —%(%_%}
2h° (4rme,)” \n'"  n"

e (1 1)

:2h2(47[80)2 n" n

which is exactly the form of the Rydberg Equation. Now dividing both sides by /¢ in order to
convert from energy units to wavenumber units
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using the reduced mass for the hydrogen atom and a nuclear charge of +1. So this model also
predicts the correct value for the Rydberg constant Ry.

The Rydberg Constant for Heavier Nuclei

The expression for the Rydberg constant is

4

_ pe
(he)2h’ (47, )

H

which has a value of Ry = 109677.581 cm™'. In this expression, p is the reduced mass of the
electron-proton system in the hydrogen atom. But what happens when the mass of the nucleus is
extremely large? First, consider the reduced mass.

memN

m, +m,
Where m. is the mass of an electron and my is the mass of the nucleus. In the case that the
nuclear mass is extremely large compared to the mass of an electron, the total mass is
approximately equally to the mass of the nucleus.

(me + mn) ® mn

In this case, the reduced mass becomes

And the Rydberg constant expression comes to
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4
R, = mzee 2
(hc)2h~ (4re,)
=109737.316 cm™

where R indicates the Rydberg constant for an infinite mass nucleus atom. It is this value that is
usually found in tables of physical constants.

But for lighter atoms, such as hydrogen, the value of the Rydberg constant deviates form
this value. In fact, hydrogen shows the largest deviation for any atom, given that it has the
lightest nucleus. Compared to experimental precision, this deviation is important (even for
atoms where the mass of an electron is only 1 x 107 times that of the nucleus!) if one hopes to fit
data to experimental precision.

To address this problem, we look back to the expression for the Rydberg constant for an
arbitrary mass nucleus, Rm.

_ pe’
(hc)27f“z2 (4re, )2

M
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Clearly as the mass of the nucleus (mn) becomes larger, the value of Rm will approach that of Rs
asymptotically.

The Wavefunctions

The hydrogen atom wavefunctions y(r,0,¢) can be expressed as a product of radial and
angular functions.

lpnlml(rt 0,0) = Ry (T)Ylml(ef ®)

The angular part is simply the spherical harmonics that were described in Chapter 5, depend on
the quantum numbers / and m;. More details of how the spherical harmonics are generally
presented as H-atom angular functions is discussed in section 3.i. The radial part of the wave
functions, Ry/(0,9) will be described in a later section.

The Angular Part of the Wavefunctions
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Each orbital wave function can be designated with a letter than indicates the value of / as
assigned in the following table.

[ Designation

S

0
1
2
3

il [=N o)

The angular parts of the wavefunctions are given by the spherical harmonics. After
taking linear combinations to eliminate the imaginary part of the wave functions, the familiar
shapes of's, p, d and f orbitals are generated. For example, the px and py orbitals are generated as
linear combinations of the p-1 and p: orbitals.

(Yl‘ -y )oc sin 6 cos ¢

1
pe=—
NG

(Yl1 +Yy ) oc sin &sin ¢

1
P=in

Similar linear combinations are used to generate the dx..y., dxy, dyz and dx. functions.

d.=Y,
1 _ 1 _
dxz :_E(Yzl_yzl) dyz :_E(Y;""Yzl)
d, :_L(Yz2 _Yz_z) d, . :_L(YZZ +YZ_2>

Xy i2

There are multiple choices for how to take linear combinations to generate the f orbital functions
(the best choice being determined by the geometry of the complex in which an f-orbital
containing atom exists), so these are rarely shown in textbooks! The tables below give the
angular parts of s, p and d hydrogen atom orbitals. The linear combinations shown above have
been used to eliminate the imaginary parts of the wave functions. The result is what is usually
plotted for the shapes of these orbitals.
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I | orbital Y, (0,4) I | orbital Y, (0,4)

1 5
0 s — d/? ‘/— 3cos’(0) -1
4 l67z( cos™(9) )

Px \/z sin(@) cos(9) dxz A {1—5 sin(#) cos(f) sin(¢)
A 167

1 Py \/% sin(@) sin(@) 2 dyz \ { 116_57z sin(#)cos(d)cos(¢)

p- \/% cos(0) dxy N 614_57r sin* (@) sin(2¢)

di%y? \ /% sin” () cos(2¢)

These functions generate the familiar angular parts of the hydrogen atom wavefunctions. Some
depictions are shown in the figure below.
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The Radial Part of the Wavefunctions

The radial part of the wavefunction has three parts. 1) a normalization constant, 2) an
associated Laguerre Polynomial and 3) an exponential part that ensures the wavefunction
vanishes as r = o. The associated Laguerre polynomials are derived from the Laguerre
polynomials (much like the associated Legendre Polynomials were from the Legendre
polynomials.) The Laguerre polynomials can be derived from the expression

X n

Ln(x) = FW x"e™*

The first few Laguerre polynomials are given by
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A recursion formula for these functions is given by
Ln+1(x) = (Zn +1- x)Ln(x) - nan—l(x)

The associated Laguerre polynomials can be generated using the expression

a

d
L
dx® " )

L, (x) =

This expression is used to generate an associated Laguerre polynomial of degree n-a and order
a. The functions of interest to the hydrogen atom radial problem are the associate Laguerre
polynomials of degree n-/-1 and order 2/+1. It can be shown that these functions can be
generated from the relationship

n—-l-1

o “ [(n + D12
Lt (0 = kZO SR s 1 TR WS T

Note that when n-/-1 is less than zero, the functions vanish. This leads to the restriction on the
quantum number / that comes from the solutions to the radial part of the problem.

[<n-1

The first few associated Laguerre polynomials that appear in the hydrogen atom wavefunctions
are shown below.

n| !/ L2 (x) # nodes
1|0 | L -1 0
0 | L)(x) 212 -x) 1
2 1| Lx) =31 0
; 0 | Li(x) 3103 - 3x - %x?) 2
1 | L(x) -41(4 - x) 1
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2 | Li(x) =51 0

Notice that if (2/+1) exceeds (n+]), the derivative causes the function to go to zero, as was the
case for the associated Legendre Polynomials when |m| exceeds [. This provides the constraint
on / that was expected to be found in the solution to the radial part given that / shows up in the
equation to be solved.

[<n-1

Typically, x is replaced by a new function in r, p. p is defined as follows:

(22}*)
p =
na,

where ay is the Bohr radius. The overall expression for the radial wavefunction is given as

follows:
% 1+%
— 7/ =1\ _r
an(r)={ (n—1 1).} { z j r’Lif]l[zzr]e S

2n[(n + l)!]3 na, na,

The first several radial wavefunctions are given below.

n 1 Ri(P)
Z 3/2 _ﬁ
1 0 Is 2(—} e
a,
Z 3/2
0 | 2s (—J 2-ple”"
2a,
2 1 Z 3/2
1] 2 — = P2
P \/5[2%} a
2 Z 3/2
0 | 3s | —=|=1| (27-18p+2p* "
2g) o)
1 22 3/2
31 1| 3 —| == 6p-p’ "
P 27(3%] (6= ')
4 Z 3/2
2 | 3d — | = 2073
27\/5(3%] p
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where p = Zr/ao. ao is the Bohr radius, which has a value of 5.291 772 49 x 10" m.

Example: What is the expectation value of  for the electron if it is in the 1s subshell of an H

atom?

Solution: The expectation value can be found from
) = [ Wis o7 s dr
0

Where °dr comes from the r portion of the volume element dx dy dz after it has been
transformed into spherical polar coordinates.

Substituting the wavefunction from above yields

This expression simplifies to

iy — 4(%0)3 Lmrs [e‘i—z] dr

A table of integrals shows

n!
an+1

(o]
f x"e ¥ dx =
0

Substituting the above integral into the general form results in

1\’ 6
(ry=4(— B
(ao) (aio)

2401\,
- 6(a) @
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Example: What is the most probable value of 7 for the electron in a hydrogen atom in a 1s
orbital?

Solution: The most probable value of 7 will be found at the maximum of the function
P(r) = r*[R(r)]?

This can be found by taking the derivative and setting it equal to zero. First, let’s find the
probability function

1
P(r) =r? Z(a—) e G| =—712e %

At the maximum, the derivative is zero.

So

d 4 T 4 ZE R _2r
__3_’,.2€a0 =— 2re @ ——712¢ a0 | =0
dr la; as

After dividing both sides by %, and placing the right-hand term on the other side of the equals
0

sign, this simplifies to

2r

This is further simplified by dividing both sides by e @:

2
2r=—r1r?
Qo

The rest of the algebra is straight forward (actually, all of the algebra was straight-forward, but
who is counting?)
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Nodes

A hydrogen atom wavefunction can have nodes in either the orbital (angular) part of the
wavefunction or the radial part. The total number of nodes is always given by n — 1. The
number of angular nodes is always given by /. The number of radial nodes, therefore, is
determined by both » and /. Consider the following examples.

nodes

\ radial \ angular total

Is| 0 0 0
4p| 2 1 3
sf] 1 3 4
2d - -
2p| 0 1 1

Notice that it is impossible to form a 2d wavefunction as it violates the relationship that
[ <n-1

causing the radial wavefunction to vanish. This is easy to see as the combination of n =2 and / =
3 implies that there are -1 radial nodes, which is clearly impossible.

Shells, Subshells and Orbitals

It is convenient to name the different subdivisions of the electronic structure of a
hydrogen atom. The subdivisions are based on the quantum numbers n, / and m;. A shell is
characterized by the quantum number n. (Examples: the n=2 shell or the n=4 shell.) A subshell
is characterized by both the quantum number n and /. (Examples: the 2s subshell or the 3d
subshell.) An orbital is characterized by the quantum number n, /, and m,. (Examples: the 2po
orbital or the 5f1 orbital.) It should be noted that an orbital can also be constructed from a linear
combination of other orbitals! (Example: the 2px orbital or the 3dxy orbital.)

Degeneracy

The hydrogen atom wavefunctions have high degeneracies since the energy of a given
level depends only on the principle quantum number n. As such, all wavefunctions with the
same value of n will have the same eigenvalue to the Hamiltonian, and are degenerate. Recall
the following relationships:

[<n-1 and lmy| <1
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These relationships can be used to fill in the following table that indicates the
degeneracies of the hydrogen atom energy levels.

degeneracy
Subshell [ i s orbital | total

Is 0 0 +, -Y2 1 2
2s 0 0 +, e 4 8
2 1 +1,0, -1 +s, -
3s 0 0 +15, -Va
3p 1 +1,0, -1 +a, Y5 9 18
3d 2 +2,+1,0, -1, -2 -
45 0 0 5, Vs
4p 1 +1,0, -1 +Vs, Vs
4d 2 +2,+1,0, -1, -2 +, -2 to >
Af 3 | 3,42, +1,0,-1,-2,-3 | +%,-%

It is clear that the total degeneracy of a shell is given by 2n2.

The Overall Wavefunctions

The total wavefunction, including both angular and radial parts, for hydrogen-like atoms

is given by

Y

nlm,

=R, (r)Y," (6.9)

The first few hydrogen atom orbital wavefunctions are given in the table below.

Shell \ Subshell \ m \Wavefunction\

| (7 3/2
1 Is 0 100 — | — e‘p
) 7 3/2
2s 0 W200 [—J 2-pler
3/2
2 0 V210 1% cos(0)
ﬂ'
2p 3/2
zZ p/2 +ig
+1 Y2141 — 51n(9)e
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Rydberg Spectra of Polyelectronic Atoms

To a very good approximation, the electronic spectra of highly excited atoms look a lot
like the spectrum of hydrogen. These highly excited states of atoms are called “Rydberg States”
and to a good approximation, the excited electron in a Rydberg state “feels” the nucleus of the
atom as a point charge. As this occurs, the atom comes to be in a state that looks much like a
state in a hydrogen-like atom, with a heavy nucleus that has a +1 charge (the residual ion if the
excited electron is removed.

In cases such as this, the energy levels of the excited electron can almost be treated using
the Rydberg formula proposed by Balmer, and with the correct Rydberg constant (Rm) and
nuclear charge. The formula does not work perfectly, but can be forced to fit the data by
introducing a “fudge factor.”

Approximating a Hydrogen-like Atom

Scientists like to force the descriptions of real systems in terms of the limiting ideal cases
with slight perturbations. In the case of real atoms, there are two common ways that this is
typically done. One is to fudge the nuclear charge and the other is to fudge on the principle
quantum number.

Shielding and Effective Nuclear Charge

One “fudges” the nuclear charge by noting that the excited electron will not “see” the
inner core ion as a point charge with a +1 charge. Instead, it will feel the full charge of the
nucleus, but shielded by the electrons that remain in the ion. Thus, the effective nuclear charge

(Z") can be used.
~ *\2 1 l
V= (Z ) RM(n_z__zj

! u

where Z, the effective nuclear charge, is defined by
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where o is the shielding constant and is determined by adding the effects of each of the inner
electrons. The trouble with this approach is that the degree of shielding is dependent on the
excitation level of the excited electron. The shielding constant 6 should reach a limiting value
for highly excited Rydberg states of the atom.

Quantum Defect and the Effective Principle Quantum Number

Another approach is to “fudge” on the principle quantum number of the excited electron.
The utility of using this method is that there is only one electron to treat, rather than a slew of
electrons in the core ion, the shielding of each will be variable. In this method, the effective
principle quantum number n" is defined as

n =n-0

where 0 is the quantum defect. The quantum defect has the useful property that it reaches a
constant value for electrons in atoms at high levels of excitation.

The ionization potential
The ionization potential of an atom I defined by the enthalpy change at 0 K for the following
reaction

M>M +¢ AH =1P

If one pictures ionization as a series of excitations of the electron to be removed through a set of
Rydberg states, one can deduce the ionization potential of an atom. (This is how atomic
spectroscopy is used to determine highly accurate ionization potentials.)

Using the effective principle quantum number n°, the energy levels can be expressed as

E IP R,

he - he (n")?

Consider the Rydberg series in »*Na, the first few levels of which is given below. For Na,
the Rydberg constant can be calculated
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Based on a guess of the ionization potential, an effective principle quantum number can be

|
|

m
Na
JRw
me + mNa

3.81763x10*° kg

9.109x10 ' kg +3.81763x10 * kg

=109734.698 cm ™

calculated for each level from

j(109737.3 16 cm™)

From n", one can calculate the quantum defect (8) and adjust the guess of the ionization potential
until 5 becomes constant for large n.

Quantum Chemistry with Applications in Molecular Spectroscopy: The Hydrogen Atom © 2022 Patrick E.

IP = 41449.48 cm™! Rna = 109734.7 cm™"
level n ) n* Energy (cm™)
3p 3 0.883 2.117 16956.17
4p 4 0.867 3.133 30266.99
5p 5 0.862 4.138 35040.38
6p 6 0.860 5.140 37296.32
7p 7 0.858 6.142 38540.18
8p 8 0.858 7.142 39298.35
9p 9 0.857 8.143 39794.48
10p 10 0.857 9.143 40136.80
11p 11 0.857 | 10.143 40382.92
12p 12 0.857 | 11.143 40565.78
13p 13 0.857 | 12.143 40705.34
14p 14 0.856 | 13.144 40814.27
15p 15 0.856 | 14.144 40900.91
16p 16 0.857 | 15.143 40970.97
17p 17 0.857 | 16.143 41028.41

Fleming - Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0)

189


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Quantum Defect for Rydberg Levels of Sodium
LP.=41449.48 cm™
0.885
0.880 -
0.875 -
v 0.870
0.865 -
0.860 -
0855 T T T T T T T
2 4 6 8 10 12 14 16 18
np (2P1,2 level)

This method is extremely sensitive and can be used to determine very precise values of
ionization potentials for atoms. The above result is 5.145 eV, whereas the literature value for the
ionization potential of sodium is 5.139 eV (Webelements). The slightly large value determined
from this data is a consequence of only using a limited number of excited levels, and not the
highest energy levels, which behave most Rydberg-like. A close examination of the data
actually reveals that there is some curvature to the 6 vs n curve at high values of n. Since the
curve is actually increasing at the larger values of n, it is an indication that the guess for the
ionization potential is slightly high — a fact that is consistent with the literature value!
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Problems

1. Calculate the finite-mass Rydberg constant (Rwm) for

a. H

b. D

c. 7N
d. 11Na

The 1s orbital wavefunction for hydrogen is given by

a. Show that this wavefunction is normalized.
b. Find the expectation value of r in units of ap (the Bohr Radius.)

Show that the 2s wavefunction for hydrogen is
a. Normalized
b. An eigenfunction of the Hamiltonian. (What is the eigenvalue?)

The Laguerre Polynomial Li(x) is given by
Li(x)=—x+1

The Associated Laguerre polynomials are generated from the relationship

a

d
L5 (x) = WLn(x)

a. Show that the Associated Laguerre polynomials L (x) = —x + 1, L1 (x) = —1, and
L%(x) = 0. (In fact, LY (x) = 0 for any choice of o. >1.)

b. Given that the Associated Laguerre polynomials used in the radial wavefunctions of
the Hydrogen atom problem are L2-+! (x), derive a relationship between # and / that
ensure that L2240 (x) # 0.
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5. Using the Laguerre polynomials L,(x) = %(x2 —4x +2)and L;(x) = —x + 1, show
that
d d
Ly () = 2= Ly () = Ly ()

6. Sketch the radial wavefunctions for the 1s, 2s, 2p, 3s, 3p, and 3d orbital wavefunctions of
Hydrogen.

7. Determine the number of nodes in each of the following hydrogen atom orbital
wavefunctions:

wavefunction \ Total nodes \ Angular nodes \ Radial nodes

8. Determine the ionization potential for ;He".
a. Find Ry, for the He-3 isotope.
b. Use the relationship

IP = Z?Ry, (ﬁ — @)

9. Based on the following data, [T RITE ] R R el i R D,

find the ionization energy of | 5 12578.950
Rb, using the fact that at 6 23715.081
high excitation, the quantum [ 27835.02
defect (6) becomes constant. ¢ 290834.94
9 30958.91
10 31653.85
11 32113.55
12 32433.50
13 32665.03
14 32838.02
15 32970.66
16 33074.59
17 33157.54
18 33224.83
19 33280.13
20 33326.13
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