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Chapter 1: Foundations and Review 
 

The study of any discipline requires some grounding in fundamentals.  Without this 

common experience, there is little hope of communicating any complex concepts.  For example, 

in order to make use of a textbook, one must be comfortable with reading.  In a mathematically 

intensive discipline such as physical chemistry, ones comfort level must extend to following 

discussions that incorporate mathematics and mathematical equations and relationships.  As an 

example, consider the proof of conservation of energy as a means to frame a discussion of this 

concept. 

 

Some Newtonian Physics 
 

Consider the definition of acceleration (a) as the first time-derivative of velocity (v) and 

the second time-derivative of position (x). 

 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
 

 

Newton’s second law states that force (F) is the product of mass (m) and acceleration. 

 

𝐹 = 𝑚𝑎 

 

= 𝑚
𝑑𝑣

𝑑𝑡
 

 

= 𝑚
𝑑2𝑥

𝑑𝑡2
 

 

Since momentum (p) is related to velocity and mass thought the definition  

 

𝑝 = 𝑚𝑣 

 

(and mass is invariant to time) the following must hold. 

 
𝑑𝑝

𝑑𝑡
=

𝑑(𝑚𝑣)

𝑑𝑡
𝑚

𝑑𝑣

𝑑𝑡
= 𝑚𝑎 = 𝐹 

 

Now consider potential energy (U) – which is also related to force through the first derivative 

with respect to position. 

 

𝐹 = −
𝑑𝑈

𝑑𝑥
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This indicates that the following equation must hold for any particle that can be described by 

Newtonian motion. 

 

−
𝑑𝑈

𝑑𝑥
=

𝑑𝑝

𝑑𝑡
 

 

The classical Hamiltonian (H) is the sum of kinetic energy (T) and potential energy (U).  And 

as it turns out, the kinetic energy can be expressed in terms of momentum. 

 

𝑇 =
𝑚𝑣2

2
=

𝑝2

2𝑚
 

 

So the Hamiltonian function, which gives the sum of the kinetic and potential energies is given 

by  

 

𝐻 =
𝑝2

2𝑚
+ 𝑈 

 

The time-rate-of-change of the total energy can be found from the first derivative of H with 

respect to t. 

 

𝑑

𝑑𝑡
𝐻 =

𝑑

𝑑𝑡
(

𝑝2

2𝑚
+ 𝑈) 

 

 

=
1

2𝑚
∙ 2𝑝 ∙

𝑑𝑝

𝑑𝑡
+

𝑑𝑈

𝑑𝑡
 

 

=
2𝑚𝑣

2𝑚
∙

𝑑𝑝

𝑑𝑡
+

𝑑𝑈

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

 

=
𝑑𝑥

𝑑𝑡
(

𝑑𝑝

𝑑𝑡
+

𝑑𝑈

𝑑𝑥
)  

 

And since 

 

−
𝑑𝑈

𝑑𝑥
=

𝑑𝑝

𝑑𝑡
 

 

it follows that 

 
𝑑

𝑑𝑡
𝐻 =

𝑑𝑥

𝑑𝑡
(−

𝑑𝑈

𝑑𝑥
+

𝑑𝑈

𝑑𝑥
) 
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=
𝑑𝑥

𝑑𝑡
(0) 

= 0 

 

This indicates that the total energy of a system that follows Newtonian physics does not change 

in time.  Another way to state this is that energy is conserved, or that total energy is a “constant 

of the motion”.  This is also a mathematical proof that the sum of potential and kinetic energy 

must be conserved in all processes, since this sum cannot change in time. 

 Many discussions in this text will rely on derivations such as above in order to make 

specific points about the nature of matter.  Keep in mind that the important points are the 

conclusions as well as the pathway to relating the conclusions to the initial parameters of the 

problem.  The more you can focus on these aspects, rather than getting bogged down in the 

specifics of the math, the more sense quantum mechanics will make to you. 

 

Some Vectors and Dot Products 
 

 The concepts of linear combinations and orthogonality show up repeatedly in quantum 

chemistry. But these are generally not new concepts to students at this level, as the same 

concepts are used to describe forces and motions in a standard physics course in classical 

mechanics. 

 Consider a pair of vectors (u and v) in three-dimensional space can be described as a 

linear combination of basis vectors in the x, y and z directions (i, j and k, respectively.) 

 

u = ai + bj + ck 

v = di + ej + fk 

 

The inner product of two vectors u and v is given the symbol <u|v>. There are many possible 

definitions for an inner product, but most students are familiar with the dot product.  The dot 

product of these two vectors can be calculated by 

 
⟨𝒖|𝒗⟩ = 𝒖 ∙ 𝒗 = (𝑎 ∙ 𝑑) + (𝑏 ∙ 𝑒) + (𝑐 ∙ 𝑓) 

 

If the dot product is zero, the two vectors are said to be orthogonal.  In three dimensional space, 

this is oftentimes interpreted as the vectors having a 90° angle between them as the dot product 

can also be calculated from 

 

u∙v = ||u|| ||v|| cos() 

 

where ||u|| indicates the magnitude of the vector u and  is the angle formed between the two 

vectors u and v.  Given this definition, the only way two vectors of non-zero magnitude can be 

orthogonal is if the cos() term vanishes.  In other words, the angle between them must be 90° or 

/2 radians. 
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 The concept of orthogonality can also be extended to include functions.  All that is 

necessary is a definition for an inner product for two functions.  The definition that we will 

encounter most in quantum mechanics is the integral over all relevant space of the product of the 

two functions. 

 

⟨𝑓(𝑥)|𝑔(𝑥)⟩ = ∫ 𝑓(𝑥) ∙ 𝑔(𝑥) 𝑑𝑥 

 

In the event that this integral is zero, the two functions are orthogonal in the same sense that two 

vectors whose dot product is zero are orthogonal. 

 In addition to being orthogonal, vectors can also be normalized.  A vector is said to be 

normalized if it has a unit magnitude.  The magnitude of a vector is determined by taking the 

square root of the dot product of the vector with itself. 

 
222 cba ++== uuu  

 

The vector has unit magnitude and is normalized if its magnitude is unity. 

 

 In the case of vectors, i, j and k form an orthonormal set.  That is to say that each vector 

in the set is orthogonal to the other two and is normalized as each has a unit magnitude.  This 

property can be defined for any set of vectors e1, e2 … eN by the following relationship 

 

ijji δ=ee  

 

where ij is a function called the Kronecker Delta and has the properties 

 

jiif0

jiif1
δ ij



=
=  

 

Similarly, functions (f1(x), f2(x) … fN(x)) can form an orthonormal set if 

 

ijjiji δdτ(x)f(x)f(x)f(x)f ==   

 

As we will see, this relationship is common in quantum mechanics, and has many useful 

properties which we will exploit as they make calculations simpler.  This will be particularly 

evident when we discuss the superposition theorem. 

 

Classical Description of a Wave on a String 
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 The mathematics used in solving quantum mechanical problems follow be the same basic 

process for each of the different problems we will examine.  In this section, those mathematics 

will be developed in order to describe a (hopefully) familiar problem in classical physics. 

Consider a wave on a string of length a which is fixed at both ends (x=0 and x=a.)  

Classical physics tells us that the wave will obey the following condition 

 

𝜕2

𝜕𝑥2
𝜑(𝑥, 𝑡) =

1

𝑣2

𝜕2

𝜕𝑡2
𝜑(𝑥, 𝑡) 

 

where (x,t)  gives the displacement of the string from equilibrium at position x and time t. 

 
 

To solve this second order partial differential equation, we separate the function into the product 

of a function which deals only in position and one which deals only in time. 

 
Let (x, t) X(x) T(t)=  

 

Substituting this form in to the equation above and gathering spatial variables on one side and 

time variables on the other, we get 

 

)()(
tv

1
)()(

x 2

2

22

2

tTxXtTxX







=  

 

)(
tv

)(
)(

x
)(

2

2

22

2

tT
d

dxX
xX

d

d
tT =  

 

Notice how the partial derivatives become total derivatives since the functions on which they 

operate depend only on the variables in the given derivative operators.  Now dividing both sides 

by X(x)T(t) yields 

 

1

X(x)

d

dx
X(x)

1

v T(t)

d

dt
T(t)

2

2 2

2

2
=  

 

The only way this can be true is if each side is equal to a constant.  Since I already know the 

answer, I am going to cheat and let that constant be -k2 since this will avoid imaginary numbers 

in the solution.  So now we generate two separated second order differential equations: 
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d

dx
X(x) k X(x)

2

2

2= −  

 

T(t)kvT(t)
td

d 22

2

2

−=  

 

These two equations are of a special type called eigenvalue-eigenfunction relationship.  In these 

type of relationships, the operator (in this case a second derivative) operates on a function, 

yielding the same function multiplied by a constant.  These type of relationships exist throughout 

quantum mechanics. 

 

The Spatial Solutions 
Let’s consider only the spatial portion for the time being.  Being a second order normal 

differential equation, there will be two linearly independent functions X(x) which satisfy the 

equation.  Two fairly obvious choices to this eigenvalue-eigenfunction problem are 

 

X(x) sin(kx)=  and X(x) cos(kx)=  

 

As mathematics would have it, any linear combination of these two solutions will also be a 

solution.  Thus, it is convenient to write a general solution that is a linear combination of the two 

linearly independent functions. 

 
X(x) Asin(kx) Bcos(kx)= +  

 

We will now employ the boundary conditions to find values for the variables A, B and k.  The 

boundary conditions are that the string is fixed at both ends.  Thus we know that 

 

0(0) =X  and 0)( =aX  

 

Using the first condition, we see that 

 

0

0

)0cos()0sin()0(

=

+=

+=

B

kBkAX

 

 

This can only be true if B = 0 since the cosine term will give a non-zero contribution for any 

non-zero value of B implying that the string is displaced from its fixed position, which it can not 

be since it is fixed at that position.  For the remainder of the solution to this problem, the cosine 

term will be neglected since it must vanish in order to ensure that X(0) = 0. 

The second condition is that X(a) = 0.  This requires that 

 
0)sin()( == akAaX  
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One way of making this true is if A = 0.  This is known as a trivial solution since it implies that 

X(x) is zero for any value of x (meaning the string is never displaced from equilibrium at any 

point.)  Many problems have trivial solutions, but these are generally ignored as they add no 

useful insight into the physical behavior of a system.   

To get the non-trivial solutions, it is useful to know when sin() = 0.  This will be true if 

 is an integral multiple of . Thus, 

 
3,2,1== nnak   

 

Or 

 

3,2,1== n
a

n
k


 

 

Another way to think of this is that the second condition (X(a) = 0) can only be met if the length 

of the string (a) is a half integral multiple of the wavelength of the sine function.   

Since there are several (an infinite number, really) possible values of n, the solution 

implies an infinite number of functions as solutions. Further, there is no reason to expect that A 

needs to be the same for each value of n.   

 

X (x) A sin
n x

n 1,2,3...

n n=










=



a  
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Time independent solutions to the classical description of a wave on a string.

a 1= x 0 0.02 a= n 1 2 4=

X n x( )
2

a
sin

n  x

a









=

0 0.5 1
2

0

2

X 1 x( )

x

0 0.5 1
2

0

2

X 2 x( )

x

0 0.5 1
2

0

2

X 3 x( )

x

0 0.5 1
2

0

2

X 4 x( )

x

 
 

Since we have only two boundary conditions, we can only determine two of the unknown 

quantities.  The last one, An, will govern the amplitude of the particular function.  A large value 

implies that the string will be displaced a large amount from its equilibrium position.  Thus, there 

may be a different value of An for each value of n (which is why the subscript is included.)  For 

the time being though, let’s leave An as a symbolic variable and evaluate it later.   

Before continuing with the time portion of the problem, let’s note some interesting 

properties of the solutions of the spatial portion.  The functions Xn(x) are called the “normal 

modes” of vibration for the string (sometimes they are called the  time-independent modes.)  

That means that a string which is prepared to vibrate with the displacements given by one of the 

functions Xn(x) will have a standing wave.  In other words, the nodes (the places along the string 

where the string does not move or Xn(x) = 0) are stationary. 

Further, the functions Xn(x) form an orthogonal set.  This implies that 

 

∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥 = 𝐴𝑛𝐴𝑚 ∫ sin (
𝑛𝜋𝑥

𝑎
) sin (

𝑚𝜋𝑥

𝑎
) 𝑑𝑥 = 𝐴𝑛𝐴𝑚𝛿𝑛𝑚 
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To prove this, it is useful to consider the following result that can be found in a standard table of 

integrals. 

 

( ) 
( )

( ) 
( )

)(
2

sin

2

sin
)sin()sin( 








 

+

+
−

−

−
=

xx
dxx  

 

Substitution into the above expression yields 

 

( )

( )

( )

( )

( )( )
( )

( )( )
( ) 








+−

+

+
−

−

−
=



















+








 +

−
−








 −

=
















=

=

=

=

00
2

sin

2

sin

2

sin

2

sin

sinsin

0

0

aa

mn

ax

x

aa

mn

ax

x
mn

mn

mn

mn

mn
AA

mn

a

xmn

mn

a

xmn

AAdx
a

xm

a

xn
AA











 

 

Since both n and m are integers, n+m and n-m will be integers as well and both sine terms will 

vanish.  Hence, for any n ≠ m, the integral will vanish.  As such, any pair of functions in this set 

are mutually orthogonal, or the functions form an orthogonal set. 

 But what happens when n = m?  Again, it is useful to pull the following result from a 

standard table of integrals. 

 






4

)2sin(

2
)(sin 2 xx
dxx −=  

 

Substitution into this expression yields the following: 

 

( )









+−−=



























−=








=

=

=

=

000
2

4

2
sin

2
sin

2

0

2

0

22

a
A

a

xn

x
Adx

a

xn
A

n

ax

x

a
n

n

ax

x
n 





 

 

A convenient result comes from choosing values for An such that the result is unity. 

 









=

2
1 2 a

An
 or 

a
An

2
=  
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An is called a normalization constant, and has a value chosen to insure that the integral of the 

square of the function over all relevant space is unity.  Another way of saying this is that An is 

chosen so as to normalize the function.  We will see this concept throughout our development of 

quantum mechanics. Note that An does not depend on n.  (This will not be the case for most 

normalization constants.)   

 These functions 

 

3,2,1sin
2

)( =







= n

a

xn

a
xX n


 

 

form an orthonormal set of functions.  The have the property that 

 

nm

x

0x

mn dx =
=

=

a

XX  

 

where nm is the Kronecker delta and has the property 

 

 nm

n m

n m
=

=



1

0

if

if
 

 

The Time Solutions 
 The solution to the time dependence part of the problem is very similar to that of the 

spatial part.  Recall that the equation 

 

T(t)kvT(t)
td

d 22

2

2

−=  

 

must be satisfied.  The value of k has already been determined from the special solutions and is 

given by 
a

nk = .  For convenience, let’s make the substitution 

 

a

vn
vkn


 ==  

 

such that n gives a frequency to the oscillation of the string that is parameterized by the velocity 

of the wave.  Further, if n is doubled, the frequency of the wave is doubled.  This would be 

manifested in the audible tone of the vibrating string going up by one octave.  Those familiar 

with the acoustic nature of overtones on strings (such as those that can be produced on the strings 

of a guitar) are familiar with this concept. 

 The substitution creates the rather familiar looking eigenvalue-eigenfunction problem 
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T(t)T(t)
td

d 2

2

2

n−=  

 

As was the case in the spatial part, the second order ordinary differential equation must have two 

linearly independent solutions, and any linear combination of those two functions will also be a 

solution to the equation.  Thus, one can write 

 

)cos()sin()( tDtCtT nn  +=  

 

The rest of the development requires a simple trick.  Since there are no remaining boundary 

conditions by which we can evaluate C and D, we can choose a constant  such that  

 

)sin(−=C   and  )cos(=D  

 

so that the time function can be expressed 

 

)sin()sin()cos()cos()(  tttT nn −=  

 

and since 

 
)sin()sin()cos()cos()cos(  −=+  

 

the function can be expressed 

 

)cos()(  += ttT n  

 

In this expression,  is a phase shift in time.  For a given choice of t = 0,  can be forced to be 

zero.  Given this constraint, the time function can be expressed 

 

)cos()( ttT n=  

 

 The final result, then, for the normalized wavefunctions that describe the motion of the 

string are given by 

 

( )t
a

xn

a
tx nn 


 cossin

2
),( 








=  

 

The Superposition Principle 
 For the following discussion, we will only concern ourselves with the time-independent 

solutions (the spatial functions) for simplicity.  The time functions could be included to give the 

time evolution of each component of a superposition of waves, but the discussion of the 
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mathematics involved would be identical to that for the spatial part of the problem.  As such, we 

will focus just on the result for a fixed point in time of t = 0. 

 As it turns out, any well-constructed wave (specifically one that obey the boundary 

conditions of the original problem) can be expressed as a linear combination of normal mode 

waves. 

 

 =
n

nn xXcx )()(  

 

where (x) gives the function that describes the shape of the arbitrary wave, Xn(x) are the time-

independent functions that were derived in the previous section, given by 

 









=

a

xn

a
xX n


sin

2
)(  

 

And the factor cn gives the amplitude of the nth component of the superposition. 

 The coefficients cn (known as Fourier coefficients) are easily calculated from the 

following expression 

 

 = dxxXxc nn )()(  

 

This is easily shown by making the substitution =
m

mm xXcx )()(  into the above equation. 
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Since integration is a linear operation, and multiplication is distributive, the result can be 

simplified 
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using the orthonormality property of the functions Xn(x) as developed above.  The sum is  also 

easy to simplify based on the properties of the Kronecker delta. 
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 The description of the function =
n

nn xXcx )()(  is known as a Fourier expansion, and 

is the same sort of mathematics used by a Fourier Transform spectrometer.  The spectrometer, 

through interferometry, measures the values of the amplitudes (cn) and then mathematically 

reconstructs the spectrum by superimposing the constituent functions Xn(x) and adding them all 

up. 

 To illustrate the concept, consider a function that is defined as  

 

axaif

axif
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2
0

2
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2)(



 

 

This function can be expanded in the basis set of normal mode (time independent) functions.  

The following MathCad worksheet calculates the values of the coefficients and demonstrates the 

superposition of waves. 
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First, define the parameters of the problem.

a 1= x 0 0.02 a= n 1 2 10=

Now the basis functions and the arbitrary function.

X n x( )
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Here is a graph of the arbitrary function:
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And to calculate the superposition:
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This sort of expansion in a set of basis functions occurs throughout chemistry including the 

construction of an sp3 hybridized orbital set used in the description of bonding in a methane 
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molecule or the addition of p-orbitals to for -bonding and antibonding orbitals.  Expect to see 

this concept again! 

 

Failures of Classical Physics 
 

 Imagine being a scientist in the year 1900.  At the time, there was significant debate in 

society as to whether or not science was a valuable discipline for study.  The argument was that 

Isaac Newton and others had already solved all of the important problems of physics and as such, 

there was nothing more to be learned.  There were still a few problems remaining that didn’t 

work perfectly according to Newtonian physics, but the prevailing thought was that it was a 

simple matter of finding the one small piece that people were missing and the entire package 

would be complete.  As it turned out, they couldn’t have been more incorrect!   

 Every new detail that was discovered on these pesky problems seemed to indicate 

something that was not commensurate with Newtonian physics at all.  And the deeper 

investigators looked, the more perplexing the problems became – and the further from classical 

physics the solutions took them. 

 But the modeling of these problems formed the foundations of a new quantum theory.  

That theory, while completely counter-intuitive to scientists of the time, is now engrained in 

every aspect of how we think of the atomic and molecular nature of matter.  As such, no study of 

chemistry is complete without exploring this bizarre world of quantum mechanics. So sit back, 

relax, and enjoy the story of the origins of the quantum theory. 

 

Max Planck and Blackbody Radiation 
One of the problems that perplexed scientists at the turn of the 20th century was that of 

the description of black-body radiation.  The term “Black Body” was introduced by Gustav 

Kirchhoff in 1860.  It refers to an object that absorbs all light that falls on it (i.e. it reflects no 

light.)  The thermal radiation emitted by a black body is called black body radiation. 

Black-body radiation is the light that is given off from a 

body that glows from being hot.  Examples of blackbody 

radiators include incandescent light bulbs and the sun.  In the 

laboratory, a black body radiator can be constructed by painting 

the inside of a metal box black (so that light is not reflected 

inside) and heating the 

box. The light given 

off by the box will be 

black body radiation. 

The emission 

spectrum of a black-

body radiator was well 

established and reproducible.  The intensity increases 

at all wavelengths and the maximum intensity shifts to 

shorter wavelengths at higher temperatures.  But while 

the experimental result was well established and 

A black body radiator 

experimental set up. 
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agreed upon, there was no theoretical model that predicted the result.  Existing classical models 

could predict either the long-wavelength side of the spectrum or the short wavelength side, but 

not both.   

Max Planck (1858-1947) produced the first theory that could predict both sides of the 

spectrum.  He did this by making a ridiculous assumption about the nature of light.  Despite the 

prevailing classical theories of the wave-nature of light and numerous experimental observations 

confirming these theories, Planck decided to model a light beam as a shower of energy packets 

(which he called Quanta) where the energy was proportional to the frequency of the light wave.   

 

hE =  

 

In this model, E is the energy of a quantum, h is a constant of proportionality and  is the 

frequency of the light wave.  

This dual nature of light (having properties of both particles and waves) was 

revolutionary, and was thus met with great skepticism.  Planck’s model, published in 1901 [1], 

can be expressed by 

 

𝐼(𝜈, 𝑇) =
2ℎ𝜈3

𝑐2
(

1

𝑒
ℎ𝜈

𝑘𝐵𝑇 − 1

) 

 

in which I is the intensity, T the temperature and c the speed of light, successfully described both 

sides of the black body radiation curve.  It also provided a value of h, the constant of 

proportionality of 

 

h = 6.36 x 10-34 J∙s 

 

Planck was awarded the Nobel Prize in Physics in 1918 for this theory.  But while interesting, 

Planck’s theory only provided one possible explanation of the black body radiation problem.  

But without corroboration from other experiments involving other phenomena, Planck’s theory 

of light quanta would not have gained any meaningful attention.  That corroboration came in a 

paper published by Albert Einstein describing a quantum theory of the photoelectric effect. 

 

Albert Einstein and the Photoelectric Effect 
When Planck published his paper in 1901, Albert Einstein was working as a scientific 

expert in the Swiss patent office while working to secure a professorship in physics.  He read 

Planck’s paper.  Through studying Planck’s work, Einstein was able to apply a quantum theory 

of light to make sense out of another well-established, but as of then not understood experiment, 

the photoelectric effect.  

The photoelectric effect involves shining light on the polished surface of metal under a 

vacuum.  If the light has a wavelength shorter than a threshold value (characteristic of the 

individual metal), electrons are emitted from the surface.  

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Foundations and Review © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

17 

 

 
 The challenge to understanding the result came from changing the intensity of the light. 

Classical physics tells us that the energy of a wave is determined by its amplitude, or in the case 

of light, the intensity.  An increase in the intensity of incident light, therefore, should lead to an 

increase in the kinetic energy possessed by the emitted electrons.  However, the kinetic energy of 

the electrons seemed to be a function not of the intensity of the light, but rather it’s frequency.  

Einstein was able to explain [2] this using Planck’s theory that light consisted of a shower of 

quant, each of which was a packet of energy the magnitude of which was proportional to the 

frequency of the light.  (Ephoton = h) 

 In Einstein’s model, the kinetic energy of the photoelectrons was determined as the 

difference between the photon energy and the “work function” or the energy necessary to rip an 

electron from the surface of the metal.   

 

 −= hEkin  

 

In this case, each quantum of light, or photon, can produce one photoelectron.  If the energy of 

the photons are too small (less than ), no photoelectrons are produced.  But at frequencies that 

exceeded the threshold value, the kinetic energy was a linear function of the light frequency, 

with the slope of that line giving a value for Planck’s constant of proportionality.  Einstein’s 

model provided a separate measurement for Planck’s constant but yielded an identical result.  At 

this point, the scientific community could no longer ignore this new quantum theory of light.  

Einstein was awarded the Nobel Prize in Physics in 1921 for explaining the photoelectric effect. 
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Johannes Balmer and the Emission Spectrum of Hydrogen 
In 1885, J.J. Balmer [3]

 

(a high school teacher and amateur scientist) wrote about the series of 

lines in the visible emission spectrum of atomic hydrogen.  The lines formed a pattern 

 

 
 

where the spacing decreased in decreasing wavelength and seemed to converge on a series limit. 

The wavelengths () of lines in this spectrum fit the pattern: 
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where G = 3647.053 Å, or the series limit, and n = 3,4,5,….  

In modern terms, this expression is given as  
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where R
H 

is known as the “Rydberg constant” for hydrogen, and has the value given by R
H 

= 

109677.581 cm
-1

. Also, n
l 
< n

u 
and either value must obey n = 1,2,3,….  

In Balmer’s paper, the expression is purely empirical (meaning it is based only on 

observation and not tied to any theoretical value.) While he was unable to provide any theory for 

the pattern he had derived from data, he did state that such a simple pattern could not be a 

coincidence. 

The job of theoretical physics was to derive a theory of the H-atom that would yield 

energy levels, transitions between which would produce the observed spectrum and the simple 

pattern determined by Balmer.  The first quantum theory of the hydrogen atom was proposed by 

Niel’s Bohr (who was born in 1885 – the year that Balmer’s paper was published!)  Bohr’s 

model is consistent with the wave nature of matter predicted by Louis de Broglie. 
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Louis de Broglie and wave nature of matter 
Louis de Broglie (1892-1987) was intrigued by the notion that light, which every sensible 

physicist knew propagated as waves, could be described as though it was a stream of particles.  

Not to be outdone, he decided to examine the ramifications of doing something equally 

preposterous – treat something everyone knew was a particle, as a wave.  de Broglie proposed 

that all particles would behave with a wave nature, and would have a wavelength determined by 

their momentum and Planck’s constant. 

 

mv

h

p

h
==  

 

Based on this theory, de Broglie predicted in his 1923 Ph.D. dissertation that interference 

patterns could be observed in electron beams diffracted by regular patterns, much in the same 

way that such results could be seen with light waves or water waves.  This phenomenon was 

observed in electron beams diffracted off of nickel surfaces in 1927 [4].  de Broglie was awarded 

the Nobel Prize in physics in 1929 for the work in his dissertation – the first time the prize was 

awarded for a PhD thesis! 

 

Niels Bohr and the Hydrogen Atom 
Niels Bohr (1885-1962) was the first person to offer a quantum theory of the hydrogen 

atom that satisfactorily predicted the patterns seen in the emission spectra of atomic hydrogen.  

Basically, Bohr suggested that the electron in a hydrogen atom orbited the nucleus (a proton) in a 

circle, the circumference of which had to be an integral multiple of de Broglie wavelengths.  

(Bohr’s model was actually published in 1913 [5] – 10 years before de Broglie’s Nobel Prize 

winning thesis, but it is easily explained based on the de Broglie principle.) 

Bohr suggested that the angular momentum of an orbiting electron had to be an integral 

multiple of Planck’s constant divided by 2. 

 

n
nh
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This expression is easily rearranged to yield the de Broglie relationship: 
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Based on this relationship, and balancing the electrostatic attractive forces with the centripetal 

force acting on the orbiting electron, Bohr was able to derive the value of the Rydberg constant 

for hydrogen and predict the pattern seen in the emission spectrum of hydrogen. 
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 While the theory does a remarkable job of describing the empirical model of Balmer, it 

has many shortcomings as well.  For example, a charged electron orbiting a charged proton 

should eventually see its orbit decay and the electron will crash into the proton.  Clearly this does 

not happen, contrary to the predictions of classical physics.  Also, the Bohr theory is not 

applicable to atoms that have more than one electron, meaning it has not real application on most 

of the atoms in which chemists have interest.  None the less, Bohr’s foothold into the quantum 

world was important.  And some important aspects of a quantum theory can be easily 

demonstrated using the model as well. 

 

Heisenberg, Schrödinger and Dirac 
While quantum mechanics is most often taught (and will be discussed in this text) in 

terms of the formalisms of Erwin Schrödinger (1887-1961), the first formal theory was derived 

by Werner Heisenberg (1901-1976) in 1925 (he was awarded the Nobel Prize in physics in 1932 

for this theory) using a matrix formalism.  Schrödinger’s methodology uses integrals and 

eigenvalue-eigenfunction relationships and was first published in 1926.  Schrödinger was 

awarded the Nobel Prize in Physics in 1933.  Two years later, he proposed the famous 

“Schrödinger’s Cat” thought experiment (after consulting with Albert Einstein, who never fully 

excepted quantum mechanics) aimed at disproving the very theory that had won Schrödinger the 

Nobel Prize.  Schrödinger clearly lamented his contributions to the scientific foofaraw that 

quantum theory would become.  In particular, he was dissatisfied by the notion of “quantum 

jumps” that were needed to describe electronic transitions in the hydrogen atom.  In one heated 

debate with Niels Bohr, Schrödinger exasperated 

 

If we are going to have to put up with these damn quantum 
jumps, I’m sorry that I ever had anything to do with quantum 
theory. [6] 

 

Paul Dirac’s (1902-1984) seminal textbook on quantum theory published in 1930 showed 

that the formalisms of Heisenberg and Schrödinger were mathematically identical.  Dirac shared 

the 1933 Nobel Prize with Schrödinger. Among the many significant contributions that Dirac 

made, was a January 1928 paper in the Proceedings of the Royal Society that helped to explain 

the nature of electron spin.  The consequences of his relativistic interpretation of the nature of an 

electron also predicted the existence of antimatter. 

There is a lot more to the story of the development of quantum theory and a great many 

colorful characters involved.  While this text will focus on the applications of quantum theory to 

understand molecular behavior rather than the history of its development, the history of the 

science is definitely something about which reading is extremely worthwhile. 

Also, given the efforts towards a unified field theory in physics, there is no time that 

studying quantum mechanics could be more valuable.  In the development of these theories, 

quantum mechanics and relativity often struggle against one another, but it is quantum 

mechanics that always seems to win these struggles.  As such, quantum theory is bound to play 

an enormous role as modern physics continues to evolve.  It is my sincerest hope that this 

introduction will not only provide a background required to make sense out of modern 
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chemistry, but also whet the appetite for more knowledge and understanding on this fascinating 

subject. 

On Superposition and the Weirdness of Quantum Mechanics1 
 In order to better appreciate the fascinating (and sometimes shocking!) results of the 

quantum world, let’s consider some measurable properties of electrons. Consider in particular 

two specific properties they exhibit. It doesn’t really matter what these properties actually are, 

but it does matter that there are only two possible outcomes when measuring these properties. 

For the purposes of this discussion, we can call these properties Latin and Greek, and the two 

measurable values of these properties are X or Y (for Latin) and  or  (for Greek.) 

 For the purposes of this discussion, let us assume that we can build a perfect sorting box 

for each property. For example, we can build a “Latin” box that will direct electrons though an 

aperture based on whether the electron is detected to have the value X, and a different aperture if 

the electron is found to have the value Y. Such a box would work as follows: 

 

 
 

Similarly, we can build a “Greek” box that will sort in the same manner, except according to the 

measured value of the Greek property: 

 

 
 

 
1 This discussion is mostly taken from the first lecture from course 8.04 at the Massachusetts Institute of 

Technology (MIT), Alan Adams, 8.04 Quantum Physics I, Spring 2014. (Massachusetts Institute of Technology: 

MIT OpenCouseWare), http://ocw.mit.edu (Accessed May 21, 2022). License: Creative Commons BY-NC-SA 
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Are the Properties Repeatable? 
 We can use these boxes to test whether or not the measured values of the Greek and Latin 

properties are repeatable. In order to do this, consider directing the X aperture output of a Latin 

box into a second Latin box. If the measured value of the property is repeatable, we would 

expect all of the electrons to exit the second Latin box through the X aperture. Pictorially, the 

second box would look as follows 

 

 
 

demonstrating that the property is indeed repeatable. The same behavior is observed using the 

Greek box, in that previously measured  electrons will always exit the  aperture of the Greek 

box. 

 

Are the Properties Correlated? 
 A reasonable question to ask is whether or not the properties are correlated. An example 

of this correlation would be observed if previously measured X electrons were more likely to be 

measured as  electrons afterward. The apparatus for testing for this kind of correlation might 

look as follows: 

 

 
 

As is suggested in the diagram, the outcome of the Greek measurement does not show any 

preference for  or  for previously measured X electrons. The outcome for measuring  

electrons with a Latin box is similar, in that half of the electrons exit the X aperture and half exit 

the Y aperture. The conclusion, therefore, would be that the Latin and Greek properties are not 

correlated. 
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 Now, suppose we try a third variation and create a three-box experiment. In this 

experiment, we will use a Latin box to select the X electrons out of an initial random stream of 

electrons. These will then run through a Greek box. We will then take the  aperture output of 

the Greek box and run that through a Latin box. The box arrangement for this experiment would 

look as follows: 

 

 
 

What do you expect for the percentages of electrons leaving the Latin box apertures? As it turns 

out, half of the  electrons leaving the Greek box will exit the X aperture and half will exit the Y 

aperture. As crazy as it seems, it appears that measuring the Greek property made the electrons 

“forget” that they were previously measured to be X electrons! 

 This has an important implication about the nature of these sorting boxes. It implies that 

it would be impossible to build a compound box (a larger box constructed for Latin and Greek 

boxes) that would simultaneously sort electrons by both Latin and Greek properties. In other 

words, the following device would not work: 

 

 
 The reason this box will not work is that the electrons do not behave as though they carry 

definite values of Latin or Greek properties. Rather, these properties have to be determined at the 

time of measurement. The result is contrary to the behavior of any particle that is well-described 

by Newtonian physics! 

 To help illustrate this, consider randomizing the state of a quarter ($0.25) by flipping it. 

We know that it will land as either heads or tails. But we can also imagine it landing with the 

head (or tail) upright or upside down. The coin can, in effect, land in one of four states. For 

convenience, let’s label them as HU, TU, HD, and TD (H/T for heads or tails, and U/D for up or 

down. 
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 For a classical object, like a coin, we expect all of the physical properties to persist. For 

example, if we flip the coin, and then measure in order, heads or tails, up or down, and then 

heads or tails, we expect the results of the first and third measurements to yield the same result.  

 But in the case of the electron, measuring the Greek property seemed to cause the 

electron to completely forget what was measured about the Latin property. This leads us to the 

conclusion that there is not an internal property that determines the outcome of the measurement 

of that Latin property – ant least not one that can survive the measurement of the Greek property. 

  

Do the Properties Interfere with One Another? 
 While it is true that electrons can not be definitively sorted simultaneously by Latin and 

Greek properties due to the lack of persistence of the measured outcomes when mixing boxes, 

one might ask if measuring one outcome interferes with the measurement of a second. Consier a 

new type of compound box, into which we will introduce two new devices: mirrors, and what we 

can consider a “combining” box. The role of the mirrors is simply to redirect a beam, but they 

will not alter the beam in any other way that its direction of travel. Similarly, the “combining” 

box will only collect the beams and cause them to travel in the same direction.  
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The box will be designed to accept the input of a beam of electrons previously selected as 

X electrons. It will then sort by Latin or Greek properties, redirect and combine the beams and 

then measure for either Latin or Greek properties at the exit aperture. Such a compound device 

might look as follows: 

 

 
 

Such a device could be configured for four different interesting experiments. These experiments 

are described below: 

 

I. Sort the X electrons using a Latin box, and measure the Latin property at the exit 

II. Sort the X electrons using a Latin box, and measure the Greek property at the exit 

III. Sort the X electrons using a Greek box, and measure the Greek property at the exit 

IV. Sort the X electrons using a Greek box, and measure the Latin property at the exit 

 

The results of these experiments are summarized in the table below: 

 

Experiment Input Sorter Detector Result? 

I 100% X Latin Latin 100% X 

II 100% X Latin Greek 50% , 50%  

III 100% X Greek Greek 50% , 50%  

IV 100% X Greek Latin ??? 

 

Let’s consider the results individually. 
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Experiment I 

 
 The results of this experiment are not surprising based on the results of the previous 

sections. Consider the path that the electrons will take as they pass through the apparatus. All of 

the X electrons incident on the box will be sorted to exit the X aperture of the Latin box and 

travel to the detector where they will again be measured as X electrons. This is the expected 

result because the property is measured to be repeatable by successive boxes of the same type. 

 

Experiment II 

 
 Again, the result is not too surprising. We expect all of the electrons to exit the “sorting” 

box along the X pathway. And since the Greek property is not correlated to the Latin property, 

when measured at the Greek detector, we expect 50%  and 50%  electrons to be detected. 
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Experiment III 

 
 In this experiment, things are getting to be more interesting, as we have to consider 

electrons exiting the “sorting” box along both the  and  paths, each accounting for half of the 

initial X electrons. Of the electrons that travel along the  path (which is expected to be 50% of 

the incident X electrons), we expect them all to be measured as  electrons. Similarly for those 

electrons which follow the  path, we expect them to be detected as  electrons at the detector. 

Experiment IV 

 
 In this configuration, one might expect half of the incident X electrons to exit the sorter 

along the  path, and when detected, half will be X, and half will be Y. Similarly for those 

electrons that travel along the  path, half will be detected as X and half will be detected as Y. 

This would result in a total of 50% X and 50% Y. And this result seems perfectly reasonable 

based on our initial results. 
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 But the quantum world has a huge surprise for us. In this experiment 100% of the 

electrons are detected as X electrons! How is this possible? It seems to completely contradict the 

notion that measuring the Greek property causes the electron to lose its Latin identity. On its 

face, this result seems completely absurd and impossible, but the behavior is observed on 

electrons, photons, and even large molecules such as buckyballs (C60 molecules)! 

 

Further Developments 
 Let’s consider a new apparatus in which beam stoppers can be introduced to block the 

individual  and  paths inside the box.  This setup might look something like what is depicted 

in the diagram below. 

 
 

 This suggests four new experiments, the designs and results of which are listed in the 

table below: 

 

Experiment -path -path 

Latin property 

detected (% of 

incident beam) 

A open open 100% X 0% Y 

B open blocked 25% X 25% Y 

C blocked open 25% X 25% Y 

D blocked blocked 0% X 0% Y 

 

 These results allow us to draw some important (but classically troubling) conclusions 

about the pathway the electrons are taking through the box. 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Foundations and Review © 2022 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

29 

 

Do they take the -path or the -path? 
 If the -path is open (experiments A and B) we detect electrons at the exit, but the 

intensity is reduced by 50% if the -path is blocked (Experiment B). This result is consistent 

with the interpretation that half of the electrons take the -path and half take the -path, and also 

is consistent with what we expect based on previous experiments. However, because we now see 

a split of both X and Y electrons detected at the exit rather than 100% X, we have to conclude 

that they electrons are not simply taking the -path. And further, we can conclude that they are 

not simply taking the -path given the results of experiment C! 

 

Are they somehow taking both paths? 
 It may seem like a silly question, but if they were taking both paths, blocking one of the 

paths would result in a half electron being detected at the exit if the incident beam was slowed 

sufficiently – and that never happens! Electrons are always detected whole and intact. So we can 

conclude that the electrons are also not magically splitting into half with each half taking one of 

the paths. 

 

Is it possible they take neither path? 
 The results of experiment D for us to reject this possibility as well, since blocking both 

paths eliminates any detected signals at the exit. They must be somehow using the pathways but 

without picking one or the other, and also not using both! 

 

The Superposition Solution 
 This is where we have to resort to a new kind of descript of the state of these electrons. 

We call this state a superposition state. We will explore what this means in great detail, and how 

we can use the stationary states of waves to form bases in which these superpositions can be 

expressed, much as we described an arbitrary wave on a string as a superposition of standing 

waves, each with a unique amplitude. 

 In the case of our last set of experiments, it would be reasonable to conclude that the 

superposition state has some sort of an oscillatory amplitude of X and Y states, such that when 

the beams are combined, the amplitudes of the Y states are removed through destructive 

interference. And, while this description may eventually be shown to be incorrect or incomplete 

through further experimentation (a possibility that always exists in science) it is at least 

consistent with the experiments summarized here. 

How to use this information going forward 
 In this chapter, we have seen how to model waves using classical models, and how 

supposition allows us to extend our understanding beyond simple stating waves. We have also 

seen how classical physics was challenged as new observations and technologies forces scientists 

to develop new models and tools in order to predict behavior in the Universe. It is important to 

view this as an active and dynamic process. 

 Remember to always think like a scientist. Our best models are useful only because they 

are consistent with the current state-of-the-art observations of the behavior of nature. And like in 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Quantum Chemistry with Applications in Molecular Spectroscopy: Foundations and Review © 2020 Patrick E. 
Fleming – Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-

NC-SA 4.0) 

30 

 

any area of scientific endeavor, there will be continual tweaks and sometimes even Earth-

shattering changes brought for as new experiments allow us to see Nature through more detailed 

lenses.  

But it is this point that makes the study of Quantum Mechanics so exiting right now, as 

we are on the cusp (perhaps) of these new discoveries and observations as scientists are able to 

use new instrumentation to make new observations every day. The hope of this book is that it 

will help you to develop enough insight into the Chemical application if Quantum Theory to 

enjoy and appreciate the intricacies of this scientific journey as these new discoveries and 

observations challenge our current best models of Nature. 
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Problems 
 

1. Consider a sphere with a mass of 1.00 kg rolling on a frictionless parabolic surface where 

the relationship between the height (h) and the position (x, in meters) is given by 

 

ℎ = (
𝑥

𝑚
)

2

𝑚   

 

a. At what point on the surface (what value of x) will the sphere have the maximum 

kinetic energy? 

b. What will the potential energy be at the point you specified in a? 

c. If the sphere begins at rest at position x = -1.00 m, what is its potential energy? 

d. Given that the sum of potential and kinetic energy is a constant, derive an expression 

for kinetic energy as a function of position for the system. 

 

2. Consider the vectors u and v given by 

 

u = 3i + 2j 

v = 2i – j 

 

 where i and j are unit vectors in the x and y directions respectively. 

 

a. Calculate the magnitudes of vectors u and v. 

b. Find expressions for vectors e1 and e2 which are unit vectors parallel to u and v 

respectively. 

c. Are the vectors u and v orthogonal? Demonstrate this mathematically. 

d. Consider a vector w = 3i – 6j. find values for c1 and c2 in order to express w as a 

linear combination of e1 and e2. 

 

w = c1e1 + c2e2 

 

3. Consider a string that is distorted from equilibrium at time t=0 such that its wavefunction 

is given by 

 

)(
5

2
)(

5

1
)( 21 xxx  +=  

 

where 







=

a

xn

a
xn


 sin2)( . 

 

a. Show that the functions n(x) form an orthogonal set of functions.  To do this, show 

that 
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 =

a

mn dxxx
0

0)()(   for n ≠m 

 

b. Show that 

 

 =

a

dxxx
0

1)()(  

 

c. Show that 

 

 =

a

dxxx
0

1
5

1
)()(   and   =

a

dxxx
0

2
5

2
)()(   

 

4. Calculate the kinetic energy and de Broglie wavelength for the following particles 

traveling at a velocity of 500 m/s. 

a. an electron 

b. a nitrogen molecule 

c. a ball bearing with mass = 0.500 g 

 

5. The wavelength of light from one line of an argon ion laser is 488 nm. 

a. Calculate the energy of a photon of this energy in 

i. J 

ii. kJ/mol 

iii. eV 

b. Of the elements in the table to the left, which (if 

any) would produce photoelectrons if light of  = 

488 nm is focused on the surface? 

c. What would be the kinetic energy of a 

photoelectron ejected from the surface of cesium 

produced by  light of  = 488 nm? 

d. What is the longest wavelength of light that will produce photoelectrons from the 

surface of silver? 

 

 

 

Metal Work Function (eV) 

Al 4.08 

Fe 4.5 

Co 5.0 

Cu 4.7 

Ag 4.73 

Au 5.1 

Na 2.28 

K 2.3 

Cs 2.1 
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